Patents by Inventor Mark-Jan Nederhof

Mark-Jan Nederhof has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8543383
    Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: September 24, 2013
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mehryar Mohri, Mark-Jan Nederhof
  • Publication number: 20120046939
    Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.
    Type: Application
    Filed: October 28, 2011
    Publication date: February 23, 2012
    Applicant: AT&T Intellectual Property II, L.P.
    Inventors: Mehryar Mohri, Mark-Jan Nederhof
  • Patent number: 8050908
    Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: November 1, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mehryar Mohri, Mark-Jan Nederhof
  • Publication number: 20080243484
    Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.
    Type: Application
    Filed: June 6, 2008
    Publication date: October 2, 2008
    Applicant: AT&T CORP.
    Inventors: Mehryar Mohri, Mark-Jan Nederhof
  • Patent number: 7398197
    Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: July 8, 2008
    Assignee: AT&T Corp.
    Inventors: Mehryar Mohri, Mark-Jan Nederhof
  • Patent number: 7181386
    Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: February 20, 2007
    Assignee: AT&T Corp.
    Inventors: Mehryar Mohri, Mark-Jan Nederhof
  • Publication number: 20030120480
    Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.
    Type: Application
    Filed: July 18, 2002
    Publication date: June 26, 2003
    Inventors: Mehryar Mohri, Mark-Jan Nederhof