Patents by Inventor Mark Jaso

Mark Jaso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8192638
    Abstract: A method for manufacturing multiple layers of waveguides is disclosed. Initially, a first cladding layer is deposited on a substrate, a first inner cladding layer is then deposited on the first cladding layer, and a first waveguide material is deposited on the first inner cladding layer. The first inner cladding layer and the first waveguide material are then selectively etched to form a first waveguide layer. Next, a second inner cladding layer followed by a second cladding layer are deposited on the first waveguide layer. The second inner cladding layer and the second cladding layer are removed by using a chemical-mechanical polishing process selective to the first waveguide material. A third inner cladding layer followed by a second waveguide material are deposited on the first waveguide material. The third inner cladding layer and the second waveguide material are then selectively etched to form a second waveguide layer.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 5, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Andrew T. S. Pomerene, Timothy J. Conway, Craig M. Hill, Mark Jaso
  • Patent number: 7974505
    Abstract: A method for fabricating selectively coupled optical waveguides on a substrate is disclosed. Initially, a first layer of waveguide material is deposited on a substrate. The first layer of waveguide material is then etched to form multiple level one waveguides and fill shapes. A dielectric layer is deposited on top of the level one waveguides and fill shapes. The surface profile of the dielectric layer deposition tracks the pattern density of the fill shapes. After the surface of the dielectric layer has been polished, a second layer of waveguide material is deposited on the substrate. At least one optically coupled waveguide structure, which is formed by a first level one waveguide and a first level two waveguide, is located adjacent to at least one non-optically coupled waveguide structure, which is formed by a second level one waveguide and a second level two waveguide.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 5, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Craig M. Hill, Mark Jaso
  • Publication number: 20100025364
    Abstract: A method for manufacturing multiple layers of waveguides is disclosed. Initially, a first cladding layer is deposited on a substrate, a first inner cladding layer is then deposited on the first cladding layer, and a first waveguide material is deposited on the first inner cladding layer. The first inner cladding layer and the first waveguide material are then selectively etched to form a first waveguide layer. Next, a second inner cladding layer followed by a second cladding layer are deposited on the first waveguide layer. The second inner cladding layer and the second cladding layer are removed by using a chemical-mechanical polishing process selective to the first waveguide material. A third inner cladding layer followed by a second waveguide material are deposited on the first waveguide material. The third inner cladding layer and the second waveguide material are then selectively etched to form a second waveguide layer.
    Type: Application
    Filed: August 29, 2008
    Publication date: February 4, 2010
    Inventors: Andrew T.S. Pomerene, Timothy J. Conway, Craig M. Hill, Mark Jaso
  • Publication number: 20100014804
    Abstract: A method for fabricating selectively coupled optical waveguides on a substrate is disclosed. Initially, a first layer of waveguide material is deposited on a substrate. The first layer of waveguide material is then etched to form multiple level one waveguides and fill shapes. A dielectric layer is deposited on top of the level one waveguides and fill shapes. The surface profile of the dielectric layer deposition tracks the pattern density of the fill shapes. After the surface of the dielectric layer has been polished, a second layer of waveguide material is deposited on the substrate. At least one optically coupled waveguide structure, which is formed by a first level one waveguide and a first level two waveguide, is located adjacent to at least one non-optically coupled waveguide structure, which is formed by a second level one waveguide and a second level two waveguide.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 21, 2010
    Inventors: Craig M Hill, Mark Jaso
  • Publication number: 20060054497
    Abstract: Apparatus and methods for measuring characteristics of a metallic target as well as other interior surfaces of a sputtering chamber. The apparatus includes a sensor configured to emit an energy beam toward a surface of interest and to detect an energy beam therefrom, the detected energy beam being indicative of parameters of a characteristic of interest of the surface of interest. Quantitative and qualitative characteristics of interest may be determined. A sputtering system including the apparatus and operable according to the methods of the invention is also disclosed.
    Type: Application
    Filed: November 1, 2005
    Publication date: March 16, 2006
    Inventors: Mark Jaso, Terry Gilton
  • Publication number: 20050023132
    Abstract: An apparatus and method for measuring the erosion profile of a metallic target in a sputtering device are provided by inserting a thin sensor into a gap between the target and a substrate pedestal. The sensor is configured to emit an energy beam toward the surface of the target and to detect a reflection of the energy beam. The sensor may comprise a source element configured to emit a collimated light beam and a plurality of detectors arranged in a linear array. The sensor may also comprise optical fibers configured to reduce the size of the sensor. The detectors are positioned relative to the source element so that one of the detectors in the array will be illuminated by a reflection of the collimated light beam. The distance from the sensor to the target may be derived from the position of the detector illuminated by the reflected beam.
    Type: Application
    Filed: August 19, 2004
    Publication date: February 3, 2005
    Inventor: Mark Jaso
  • Patent number: 6632377
    Abstract: Copper or a copper alloy is removed by chemical-mechanical planarization (CMP) in a slurry of an oxidizer, an oxidation inhibitor, and an additive that appreciably regulates copper complexing with the oxidation inhibitor.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: October 14, 2003
    Assignee: International Business Machines Corporation
    Inventors: Vlasta Brusic, Daniel C. Edelstein, Paul M. Feeney, William Guthrie, Mark Jaso, Frank B. Kaufman, Naftali Lustig, Peter Roper, Kenneth Rodbell, David B. Thompson
  • Patent number: 6136686
    Abstract: Provision of differential etching of layers by, for example, an etch stop layer or implantation, allows a second trough etch to be performed in accordance with a block-out mask (which does not require high accuracy of registration) to provide troughs or recesses of different depths in layers of insulator. When the recesses or troughs are filled by metal deposition and patterned by planarization in accordance with damascene processing, structurally robust conductors of differing thicknesses may be achieved and optimized to enhance noise immunity and/or signal propagation speed in different functional regions of an integrated circuit such as the so-called array and support portions of a dynamic random access memory.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: October 24, 2000
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Mark Jaso, Hing Wong