Patents by Inventor Mark K. Debe

Mark K. Debe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7311990
    Abstract: A fuel cell sub-assembly includes first and second flow field plates each comprising several fastener apertures defined at a number of fastening locations. A membrane electrode assembly is situated between the first and second flow field plates and includes several fastener apertures defined at a number of fastening locations, the respective fastener apertures aligned to define fastening holes. A form-in-place fastener formed of an elastomeric material is disposed in each of the fastening holes. The elastomeric material facilitates volumetric displacement of the form-in-place fasteners in response to placing the fuel cell sub-assembly in compression.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: December 25, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Andrew J. L. Steinbach
  • Patent number: 6770337
    Abstract: Articles having a component with a surface defining microstructured features can be formed using thermal transfer elements. One example of a suitable thermal transfer element includes a microstructured layer having a surface defining microstructured features imposed on the microstructured layer. The thermal transfer element is configured and arranged for the transfer of at least a portion of the microstructured layer to a receptor while substantially preserving the microstructured features of that portion.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: August 3, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Martin B. Wolk
  • Patent number: 6613106
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: September 2, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Publication number: 20030138555
    Abstract: Articles having a component with a surface defining microstructured features can be formed using thermal transfer elements. One example of a suitable thermal transfer element includes a microstructured layer having a surface defining microstructured features imposed on the microstructured layer. The thermal transfer element is configured and arranged for the transfer of at least a portion of the microstructured layer to a receptor while substantially preserving the microstructured features of that portion.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 24, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Martin B. Wolk
  • Publication number: 20030041444
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Application
    Filed: August 5, 2002
    Publication date: March 6, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6521324
    Abstract: Articles having a component with a surface defining microstructured features can be formed using thermal transfer elements. One example of a suitable thermal transfer element includes a microstructured layer having a surface defining microstructured features imposed on the microstructured layer. The thermal transfer element is configured and arranged for the transfer of at least a portion of the microstructured layer to a receptor while substantially preserving the microstructured features of that portion.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: February 18, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Martin B. Wolk
  • Patent number: 6482763
    Abstract: The present invention provides fuel cell electrode catalysts comprising alternating platinum-containing layers and layers containing suboxides of a second metal, where the catalyst demonstrates an early onset of CO oxidation. Preferred second metals are selected from the group consisting of Group IIIb metals, Group IVb metals, Group Vb metals, Group VIb metals and Group VIIb metals, most preferably Ti, Ta, W and Mo. The present invention additionally provides methods of making such catalysts, preferably by alternate deposition of platinum and second metals in the presence of substoichiometric amounts of gaseous oxygen.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: November 19, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Gregory M. Haugen, Mark K. Debe, John H. Thomas, III, Krzysztof A. Lewinski, George D. Vernstrom
  • Patent number: 6432571
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: August 13, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6428584
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: August 6, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6425993
    Abstract: A method is provided for making a membrane electrode that employs a composite membrane, which include both a porous membrane and an ion conducting electrolyte, by partially filling a porous membrane with an ion conducting electrolyte to form a partially filled membrane and then compressing the partially filled membrane with electrode particles so as to remove void volume from the partially filled membrane and embed the electrode particles in the partially filled membrane. The membrane electrode of this invention is suitable for use in electrochemical devices, including proton exchange membrane fuel cells, electrolyzers, chlor-alkali separation membranes, and the like.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: July 30, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Thao Ngoc Pham, Andrew J. Steinbach
  • Patent number: 6391578
    Abstract: A method for partitioning an aqueous biological liquid sample into discrete microvolumes for detection and enumeration of microorganisms is described. The method involves distributing microvolumes of a sample to a plurality of hydrophilic liquid-retaining zones of a culture device, where each liquid-retaining zone is surrounded by a portion of a hydrophobic “land” area. Also disclosed are devices for carrying out these methods.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: May 21, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Michael G. Williams, Kurt J. Halverson, Gary E. Krejcarek, Ai-Ping Wei, James G. Berg, Peter D. Wickert, Clyde D. Calhoun, Mark K. Debe, Jean Qiu
  • Publication number: 20020004453
    Abstract: The present invention provides fuel cell electrode catalysts comprising alternating platinum-containing layers and layers containing suboxides of a second metal, where the catalyst demonstrates an early onset of CO oxidation. Preferred second metals are selected from the group consisting of Group IIIb metals, Group IVb metals, Group Vb metals, Group VIb metals and Group VIIb metals, most preferably Ti, Ta, W and Mo. The present invention additionally provides methods of making such catalysts, preferably by alternate deposition of platinum and second metals in the presence of substoichiometric amounts of gaseous oxygen.
    Type: Application
    Filed: December 22, 2000
    Publication date: January 10, 2002
    Applicant: 3M Innovative Properties Company
    Inventors: Gregory M. Haugen, Mark K. Debe, John H. Thomas, Krzysztof A. Lewinski, George D. Vernstrom
  • Patent number: 6319293
    Abstract: A membrane electrode assembly is provided comprising an ion conducting membrane and one or more electrode layers that comprise nanostructured elements, wherein the nanostructured elements are in incomplete contact with the ion conducting membrane. This invention also provides methods to make the membrane electrode assembly of the invention. The membrane electrode assembly of this invention is suitable for use in electrochemical devices, including proton exchange membrane fuel cells, electrolyzers, chlor-alkali separation membranes, and the like.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: November 20, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Richard J. Poirier, Michael K. Wackerfuss, Raymond J. Ziegler
  • Publication number: 20010024805
    Abstract: A method for partitioning an aqueous biological liquid sample into discrete microvolumes for detection and enumeration of microorganisms is described. The method involves distributing microvolumes of a sample to a plurality of hydrophilic liquid-retaining zones of a culture device, where each liquid-retaining zone is surrounded by a portion of a hydrophobic “land” area. Also disclosed are devices for carrying out these methods.
    Type: Application
    Filed: April 2, 2001
    Publication date: September 27, 2001
    Applicant: 3M Innovative Properties Company
    Inventors: Michael G. Williams, Kurt J. Halverson, Gary E. Krejcarek, Ai-Ping Wei, James G. Berg, Peter D. Wickert, Clyde D. Calhoun, Mark K. Debe, Jean Qiu
  • Patent number: 6183668
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: February 6, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 6042959
    Abstract: A method is provided for making a membrane electrode that employs a composite membrane, which include both a porous membrane and an ion conducting electrolyte, by partially filling a porous membrane with an ion conducting electrolyte to form a partially filled membrane and then compressing the partially filled membrane with electrode particles so as to remove void volume from the partially filled membrane and embed the electrode particles in the partially filled membrane. The membrane electrode of this invention is suitable for use in electrochemical devices, including proton exchange membrane fuel cells, electrolyzers, chlor-alkali separation membranes, and the like.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: March 28, 2000
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Thao Ngoc Pham, Andrew J. Steinbach
  • Patent number: 6040077
    Abstract: Nanostructured elements are provided for use in the electrode of a membrane electrode assembly for use in fuel cells, sensors, electrochemical cells, and the like. The nanostructured elements comprise acicular microstructured support whiskers bearing acicular nanoscopic catalyst particles which may comprise alternating layers of catalyst materials, which may comprise a surface layer that differs in composition from the bulk composition of the catalyst particles, and which may demonstrate improved carbon monoxide tolerance.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: March 21, 2000
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Gregory M. Haugen, Andrew J. Steinbach, John H. Thomas, III, Raymond J. Ziegler
  • Patent number: 6004494
    Abstract: An electrically reactive composite article including a random or regular array of microstructures partially encapsulated within an encapsulating layer, microstructures each including a whisker-like structure, optionally having a conformal coating enveloping the whisker-like structure is described. The composite article is useful as an electrically conducting component of a circuit, antenna, microelectrode, reactive heater, and multimode sensor to detect the presence of vapors, gases, or liquid analystes.
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: December 21, 1999
    Assignee: 3M Innovative Properties Company
    Inventor: Mark K. Debe
  • Patent number: 5910378
    Abstract: Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: June 8, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Mark K. Debe, James M. Larson, William V. Balsimo, Andrew J. Steinbach, Raymond J. Ziegler
  • Patent number: 5879827
    Abstract: Nanostructured elements are provided for use in the electrode of a membrane electrode assembly for use in fuel cells, sensors, electrochemical cells, and the like. The nanostructured elements comprise acicular microstructured support whiskers bearing acicular nanoscopic catalyst particles which may comprise alternating layers of catalyst materials, which may comprise a surface layer that differs in composition from the bulk composition of the catalyst particles, and which may demonstrate improved carbon monoxide tolerance.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: March 9, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Mark K. Debe, Gregory M. Haugen, Andrew J. Steinbach, John H. Thomas, III, Raymond J. Ziegler