Patents by Inventor Mark L. Brown

Mark L. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12343156
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Grant
    Filed: November 21, 2023
    Date of Patent: July 1, 2025
    Assignee: Medtronic, Inc.
    Inventors: Elise J. Higgins, Mark L. Brown, Jian Cao
  • Patent number: 12311182
    Abstract: A medical device is configured to sense a cardiac electrical signal and detect an atrial tachyarrhythmia based on the sensed cardiac electrical signal. The medical device is configured to determine that far field oversensing criteria are met by the cardiac electrical signal during the detected atrial tachyarrhythmia. The medical device may detect termination of the detected atrial tachyarrhythmia in response to the far field oversensing criteria being met.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: May 27, 2025
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Mark L. Brown, Vincent P. Ganion, Yanina Grinberg, Troy E. Jackson, Todd J. Sheldon, Shravya Srigiri, Paul R. Solheim
  • Patent number: 12201820
    Abstract: A medical device system includes a cardiac electrical stimulation device and a ventricular assist device (VAD). The cardiac stimulation device and the VAD are capable of communication with each other to confirm detection of cardiac events.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: January 21, 2025
    Assignee: Medtronic, Inc.
    Inventor: Mark L. Brown
  • Publication number: 20240081717
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Elise J. HIGGINS, Mark L. BROWN, Jian CAO
  • Patent number: 11826153
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Elise J. Higgins, Mark L. Brown, Jian Cao
  • Publication number: 20230330425
    Abstract: Techniques are disclosed for a multi-tier system for predicting cardiac arrhythmia in a patient. In one example, a computing device processes parametric patient data and provider data for a patient to generate a long-term probability that a cardiac arrhythmia will occur in the patient within a first time period. In response to determining that the cardiac arrhythmia is likely to occur within the first time period, the computing device causes a medical device to process the parametric patient data to generate a short-term probability that the cardiac arrhythmia will occur in the patient within a second time period. In response to determining that the cardiac arrhythmia is likely to occur within the second time period, the medical device performs a remediative action to reduce the likelihood that the cardiac arrhythmia will occur.
    Type: Application
    Filed: April 28, 2023
    Publication date: October 19, 2023
    Inventors: Tarek D. Haddad, Athula I. Abeyratne, Mark L. Brown, Donald R. Musgrove, Andrew Radtke, Mugdha V. Tasgaonkar
  • Patent number: 11679268
    Abstract: Techniques are disclosed for a multi-tier system for predicting cardiac arrhythmia in a patient. In one example, a computing device processes parametric patient data and provider data for a patient to generate a long-term probability that a cardiac arrhythmia will occur in the patient within a first time period. In response to determining that the cardiac arrhythmia is likely to occur within the first time period, the computing device causes a medical device to process the parametric patient data to generate a short-term probability that the cardiac arrhythmia will occur in the patient within a second time period. In response to determining that the cardiac arrhythmia is likely to occur within the second time period, the medical device performs a remediative action to reduce the likelihood that the cardiac arrhythmia will occur.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: June 20, 2023
    Assignee: Medtronic, Inc.
    Inventors: Tarek D Haddad, Athula I Abeyratne, Mark L. Brown, Donald R Musgrove, Andrew Radtke, Mugdha V Tasgaonkar
  • Publication number: 20230136836
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventors: Elise J. HIGGINS, Mark L. BROWN, Jian CAO
  • Patent number: 11576607
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: February 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: Elise J. Higgins, Mark L. Brown, Jian Cao
  • Publication number: 20220288387
    Abstract: A medical device is configured to sense a cardiac electrical signal and detect an atrial tachyarrhythmia based on the sensed cardiac electrical signal. The medical device is configured to determine that far field oversensing criteria are met by the cardiac electrical signal during the detected atrial tachyarrhythmia. The medical device may detect termination of the detected atrial tachyarrhythmia in response to the far field oversensing criteria being met.
    Type: Application
    Filed: February 10, 2022
    Publication date: September 15, 2022
    Inventors: Saul E. GREENHUT, Mark L. BROWN, Vincent P. GANION, Yanina GRINBERG, Troy E. JACKSON, Todd J. SHELDON, Shravya SRIGIRI, Paul R. SOLHEIM
  • Publication number: 20220225919
    Abstract: A wearable garment and an arrangement of electrodes configured to measure bioelectrical signals from a patient. The dry electrodes are free from adhesives to hold the electrodes in place on the patient's skin. The arrangement of the electrodes may be configured to limit noise and facilitate accurate signal sensing from the patient even with some amount of relative movement between the electrodes and the patient's skin. The wearable garment may be controllable to change the amount of compression based on the sensed signals from the electrodes, and from other sensors. The garment may maintain a comfortable level of compression until processing circuitry detects a signal of interest, such as a cardiac arrhythmia, irregular respiration, or some other signal. The processing circuitry may cause the wearable garment to increase compression to improve the contact between the electrodes and the patient's skin and improve reception of the measured signals.
    Type: Application
    Filed: January 19, 2021
    Publication date: July 21, 2022
    Inventors: Jian Cao, Mark L. Brown, Paul J. DeGroot, Adam J. Black, Arthur K. Lai
  • Publication number: 20220088366
    Abstract: A medical device system includes a cardiac electrical stimulation device and a ventricular assist device (VAD). The cardiac stimulation device and the VAD are capable of communication with each other to confirm detection of cardiac events.
    Type: Application
    Filed: December 3, 2021
    Publication date: March 24, 2022
    Inventor: Mark L. BROWN
  • Patent number: 11213670
    Abstract: A medical device system includes a cardiac electrical stimulation device and a ventricular assist device (VAD). The cardiac stimulation device and the VAD are capable of communication with each other to confirm detection of cardiac events.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: January 4, 2022
    Assignee: Medtronic, Inc.
    Inventor: Mark L. Brown
  • Patent number: 11134881
    Abstract: A system for detecting an atrial tachyarrhythmia episode includes a medical device having sensing circuitry configured to receive a cardiac electrical signal from electrodes coupled to the medical device and a processor configured to detect an atrial tachyarrhythmia episode in response to a time duration of the cardiac electrical signal classified as an atrial tachyarrhythmia being greater than or equal to a first detection threshold. The processor is configured to determine if detection threshold adjustment criteria are met based on at least the detected first atrial tachyarrhythmia episode and adjust the first detection threshold to a second detection threshold different than the first detection threshold in response to the detection threshold adjustment criteria being met.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: October 5, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Mark L. Brown, Elise J. Higgins, Paul J. DeGroot
  • Publication number: 20200196899
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Elise J. HIGGINS, Mark L. BROWN, Jian CAO
  • Publication number: 20200108260
    Abstract: Techniques are disclosed for a multi-tier system for predicting cardiac arrhythmia in a patient. In one example, a computing device processes parametric patient data and provider data for a patient to generate a long-term probability that a cardiac arrhythmia will occur in the patient within a first time period. In response to determining that the cardiac arrhythmia is likely to occur within the first time period, the computing device causes a medical device to process the parametric patient data to generate a short-term probability that the cardiac arrhythmia will occur in the patient within a second time period. In response to determining that the cardiac arrhythmia is likely to occur within the second time period, the medical device performs a remediative action to reduce the likelihood that the cardiac arrhythmia will occur.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Inventors: Tarek D Haddad, Athula I Abeyratne, Mark L. Brown, Donald R Musgrove, Andrew Radtke, Mugdha V Tasgaonkar
  • Patent number: 10575748
    Abstract: A medical device is configured to detect an atrial tachyarrhythmia episode. The device senses a cardiac signal, identifies R-waves in the cardiac signal attendant ventricular depolarizations and determines classification factors from the R-waves identified over a predetermined time period. The device classifies the predetermined time period as one of unclassified, atrial tachyarrhythmia and non-atrial tachyarrhythmia by comparing the determined classification factors to classification criteria. A classification criterion is adjusted from a first classification criterion to a second classification criterion after at least one time period being classified as atrial tachyarrhythmia. An atrial tachyarrhythmia episode is detected by the device in response to at least one subsequent time period being classified as atrial tachyarrhythmia based on the adjusted classification criterion.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: March 3, 2020
    Assignee: Medtronic, Inc.
    Inventors: Elise J. Higgins, Mark L. Brown, Jian Cao
  • Publication number: 20190357795
    Abstract: A system for detecting an atrial tachyarrhythmia episode includes a medical device having sensing circuitry configured to receive a cardiac electrical signal from electrodes coupled to the medical device and a processor configured to detect an atrial tachyarrhythmia episode in response to a time duration of the cardiac electrical signal classified as an atrial tachyarrhythmia being greater than or equal to a first detection threshold. The processor is configured to determine if detection threshold adjustment criteria are met based on at least the detected first atrial tachyarrhythmia episode and adjust the first detection threshold to a second detection threshold different than the first detection threshold in response to the detection threshold adjustment criteria being met.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 28, 2019
    Inventors: Jian CAO, Mark L. BROWN, Elise J. HIGGINS, Paul J. DEGROOT
  • Publication number: 20190275225
    Abstract: A medical device system includes a cardiac electrical stimulation device and a ventricular assist device (VAD). The cardiac stimulation device and the VAD are capable of communication with each other to confirm detection of cardiac events.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventor: Mark L. BROWN
  • Patent number: 10368769
    Abstract: A system for detecting an atrial tachyarrhythmia episode includes a medical device having sensing circuitry configured to receive a cardiac electrical signal from electrodes coupled to the medical device and a processor configured to detect an atrial tachyarrhythmia episode in response to a time duration of the cardiac electrical signal classified as an atrial tachyarrhythmia being greater than or equal to a first detection threshold. The processor is configured to determine if detection threshold adjustment criteria are met based on at least the detected first atrial tachyarrhythmia episode and adjust the first detection threshold to a second detection threshold different than the first detection threshold in response to the detection threshold adjustment criteria being met.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 6, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Mark L. Brown, Elise J. Higgins, Paul J. Degroot