Patents by Inventor Mark L. Stone

Mark L. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200023094
    Abstract: A method of treating a liquid. The method comprises providing a feed liquid comprising at least one solvent and at least one solute to a first side of a membrane. A single-phase draw solution comprising at least one of an aminium salt, an amidinium salt, and a guanidinium salt is provided to a second side of the membrane. The at least one solvent is osmosed across the membrane and into the single-phase draw solution to form a diluted single-phase draw solution. At least one of CO2, CS2, and COS is removed from the diluted single-phase draw solution to form a first multiple-phase solution comprising a first liquid phase comprising the at least one solvent, and a second liquid phase comprising at least one of an amine compound, an amidine compound, and a guanidine compound. A liquid purification system is also described.
    Type: Application
    Filed: June 3, 2019
    Publication date: January 23, 2020
    Inventors: Aaron D. Wilson, Frederick F. Stewart, Mark L. Stone
  • Patent number: 10363336
    Abstract: A method of treating a liquid. The method comprises providing a feed liquid comprising at least one solvent and at least one solute to a first side of a membrane. A single-phase draw solution comprising at least one of an aminium salt, an amidinium salt, and a guanidinium salt is provided to a second side of the membrane. The at least one solvent is osmosed across the membrane and into the single-phase draw solution to form a diluted single-phase draw solution. At least one of CO2, CS2, and COS is removed from the diluted single-phase draw solution to form a first multiple-phase solution comprising a first liquid phase comprising the at least one solvent, and a second liquid phase comprising at least one of an amine compound, an amidine compound, and a guanidine compound. A liquid purification system is also described.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: July 30, 2019
    Assignee: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Aaron D. Wilson, Frederick F. Stewart, Mark L. Stone
  • Patent number: 10099178
    Abstract: A method of treating an aqueous liquid. The method comprises providing an aqueous feed liquid comprising water and at least one solute to a first side of a membrane. A draw solution comprising water and a draw solute comprising at least one of a phosphazene compound and a triazine compound is provided to a second side of the membrane. At least a portion of the water of the aqueous feed liquid is osmosed across the membrane and into the draw solution to form a diluted draw solution comprising water and the draw solute. The water of the diluted draw solution is separated from the draw solute of the diluted draw solution to form a purified water product. Draw solutes comprising phosphazene compounds and draw solutes comprising triazine compounds are also disclosed, as are methods of forming the draw solutes.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: October 16, 2018
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Frederick F. Stewart, Michael T. Benson, Mark L. Stone
  • Publication number: 20160074811
    Abstract: A method of treating an aqueous liquid. The method comprises providing an aqueous feed liquid comprising water and at least one solute to a first side of a membrane. A draw solution comprising water and a draw solute comprising at least one of a phosphazene compound and a triazine compound is provided to a second side of the membrane. At least a portion of the water of the aqueous feed liquid is osmosed across the membrane and into the draw solution to form a diluted draw solution comprising water and the draw solute. The water of the diluted draw solution is separated from the draw solute of the diluted draw solution to form a purified water product. Draw solutes comprising phosphazene compounds and draw solutes comprising triazine compounds are also disclosed, as are methods of forming the draw solutes.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Inventors: Frederick F. Stewart, Michael T. Benson, Mark L. Stone
  • Patent number: 8871385
    Abstract: An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 28, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Kevin L. Gering, Frederick F. Stewart, Aaron D. Wilson, Mark L. Stone
  • Publication number: 20130196223
    Abstract: An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: KEVIN L. GERING, FREDERICK F. STEWART, AARON D. WILSON, MARK L. STONE
  • Publication number: 20130048564
    Abstract: A method of treating an aqueous liquid. The method comprises providing an aqueous feed liquid comprising water and at least one solute to a first side of a membrane. A draw solution comprising water and a draw solute comprising at least one of a phosphazene compound and a triazine compound is provided to a second side of the membrane. At least a portion of the water of the aqueous feed liquid is osmosed across the membrane and into the draw solution to form a diluted draw solution comprising water and the draw solute. The water of the diluted draw solution is separated from the draw solute of the diluted draw solution to form a purified water product. Draw solutes comprising phosphazene compounds and draw solutes comprising triazine compounds are also disclosed, as are methods of forming the draw solutes.
    Type: Application
    Filed: May 24, 2012
    Publication date: February 28, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Frederick F. Stewart, Michael T. Benson, Mark L. Stone
  • Publication number: 20130048561
    Abstract: A method of treating a liquid. The method comprises providing a feed liquid comprising at least one solvent and at least one solute to a first side of a membrane. A single-phase draw solution comprising at least one of an aminium salt, an amidinium salt, and a guanidinium salt is provided to a second side of the membrane. The at least one solvent is osmosed across the membrane and into the single-phase draw solution to form a diluted single-phase draw solution. At least one of CO2, CS2, and COS is removed from the diluted single-phase draw solution to form a first multiple-phase solution comprising a first liquid phase comprising the at least one solvent, and a second liquid phase comprising at least one of an amine compound, an amidine compound, and a guanidine compound. A liquid purification system is also described.
    Type: Application
    Filed: May 24, 2012
    Publication date: February 28, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Aaron D. Wilson, Frederick F. Stewart, Mark L. Stone
  • Patent number: 8124414
    Abstract: A taggant comprising at least one perfluorocarbon compound surrounded by a polyphosphazene compound. The polyphosphazene compound has the chemical structure: wherein G1 and G2 are pendant groups having different polarities, m is an integer greater than or equal to 100, and each of A and B is independently selected from hydrogen, an alkyl, an alkene, an alkoxide, a polyether, a polythioether, a siloxane, and —X(CH2)nY1(CH2)p1Y2(CH2)p2 . . . Yi(CH2)piCH3, where n ranges from 1 to 6, X and Y are independently selected from oxygen, sulfur, selenium, tellurium, and polonium, and p1 through pi range from 1 to 6. Cyclic polyphosphazene compounds lacking the A and B groups are also disclosed, as are methods of forming the taggant and of detecting an object.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: February 28, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Mason K. Harrup, Frederick F. Stewart, Mark L. Stone
  • Publication number: 20110100091
    Abstract: A taggant comprising at least one perfluorocarbon compound surrounded by a polyphosphazene compound. The polyphosphazene compound has the chemical structure: wherein G1 and G2 are pendant groups having different polarities, m is an integer greater than or equal to 100, and each of A and B is independently selected from hydrogen, an alkyl, an alkene, an alkoxide, a polyether, a polythioether, a siloxane, and —X(CH2)nY1(CH2)p1Y2(CH2)p2 . . . Yi(CH2)piCH3, where n ranges from 1 to 6, X and Y are independently selected from oxygen, sulfur, selenium, tellurium, and polonium, and p1 through pi range from 1 to 6. Cyclic polyphosphazene compounds lacking the A and B groups are also disclosed, as are methods of forming the taggant and of detecting an object.
    Type: Application
    Filed: November 5, 2009
    Publication date: May 5, 2011
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Mason K. Harrup, Frederick F. Stewart, Mark L. Stone
  • Patent number: 7304300
    Abstract: A method of covertly tagging an object for later tracking includes providing a material capable of at least one of being applied to the object and being included in the object, which material includes deuterium; and performing at least one of applying the material to the object and including the material in the object in a manner in which in the appearance of the object is not changed, to the naked eye.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 4, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Judy K. Partin, Mark L. Stone, John Slater, James R. Davidson
  • Patent number: 6602418
    Abstract: One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: August 5, 2003
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: Eric S. Peterson, Douglas W. Marshall, Mark L. Stone
  • Publication number: 20020144947
    Abstract: One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.
    Type: Application
    Filed: January 22, 2001
    Publication date: October 10, 2002
    Applicant: Bechtel BWTX Idaho, LLC
    Inventors: Eric S. Peterson, Douglas W. Marshall, Mark L. Stone
  • Patent number: 6093325
    Abstract: The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.
    Type: Grant
    Filed: August 5, 1997
    Date of Patent: July 25, 2000
    Assignee: Bechtel BWXT Idaho, LLC
    Inventor: Mark L. Stone
  • Patent number: 6036030
    Abstract: A method and apparatus is provided for casting a polymeric membrane on the inside surface of porous tubes to provide a permeate filter system capable of withstanding hostile operating conditions and having excellent selectivity capabilities. Any polymer in solution, by either solvent means or melt processing means, is capable of being used in the present invention to form a thin polymer membrane having uniform thickness on the inside surface of a porous tube. Multiple tubes configured as a tubular module can also be coated with the polymer solution. By positioning the longitudinal axis of the tubes in a substantially horizontal position and rotating the tube about the longitudinal axis, the polymer solution coats the inside surface of the porous tubes without substantially infiltrating the pores of the porous tubes, thereby providing a permeate filter system having enhanced separation capabilities.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: March 14, 2000
    Assignee: Bechtel BWXT Idaho LLC
    Inventors: Mark L. Stone, Christopher J. Orme, Eric S. Peterson
  • Patent number: 5445795
    Abstract: Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.
    Type: Grant
    Filed: November 17, 1993
    Date of Patent: August 29, 1995
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Gregory D. Lancaster, Glenn A. Moore, Mark L. Stone, William K. Reagen
  • Patent number: 5385672
    Abstract: Methods for adjustable separation of solutes and solvents involve the combination of the use of a maximally swollen membrane and subsequent vacuum depressurization exerted on the permeate side of that membrane. By adjusting the extent of depressurization it is possible to separate solvent from solutes and solutes from each other. Improved control of separation parameters as well as improved flux rates characterize the present invention.
    Type: Grant
    Filed: October 13, 1993
    Date of Patent: January 31, 1995
    Assignee: EG&G Idaho, Inc.
    Inventors: Eric S. Peterson, Christopher J. Orme, Mark L. Stone
  • Patent number: 5211803
    Abstract: Poly(arylene sulfide) articles having plated metal paths thereon are disclosed. A pattern of areas of lesser crystallinity and areas of higher crystallinity is created in the polymer morphology of a surface of the article. The surface is then exposed to a chemical etchant selectively active upon the areas of lesser crystallinity thereby etching those areas of lesser crystallinity while leaving areas of higher crystallinity substantially unaffected. Then a conductive metal is deposited on the etched areas of lesser crystallinity by an electroless plating process. Subsequent electroplating can also be used.
    Type: Grant
    Filed: March 23, 1992
    Date of Patent: May 18, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Timothy W. Johnson, Mark L. Stone
  • Patent number: 5157261
    Abstract: A portable fiber optic detector that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: October 20, 1992
    Assignee: EG&G Idaho, Inc.
    Inventors: Alan E. Grey, Judy K. Partin, Mark L. Stone, Ray M. Von Wandruszka, William K. Reagen, Jani C. Ingram, Gregory D. Lancaster
  • Patent number: H1309
    Abstract: A composite is produced by first coating a reinforcing material with an inorganic phosphazene compound and then polymerizing the phosphazene compound so as to confer superior thermal, physical and chemical resistance qualities to the composite.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: May 3, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles A. Allen, Alan E. Grey, Robert R. McCaffrey, Brenda M. Simpson, Mark L. Stone