Patents by Inventor Mark Lake

Mark Lake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11067345
    Abstract: Passively deployable thermal management devices, systems, and methods are provided in accordance with various embodiments. For example, some embodiments include a passively deployable radiator device that may include: one or more thermally conductive layers; and/or one or more strain energy components configured to deploy passively the one or more thermally conductive layers. The one or more thermally conductive layers may include one or more carbon layers. The one or more carbon layers may include at least one or more graphite layers or one or more graphene layers. At least the one or more graphite layers or the one or more graphene layers include at least one or more pyrolytic graphite sheets or one or more pyrolytic graphene sheets.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: July 20, 2021
    Assignee: Roccor, LLC
    Inventors: William Francis, Michael Hulse, Steven Isaacs, Mark Lake, Greg Shoukas, Dana Turse, Mario Saldana
  • Patent number: 10948238
    Abstract: Methods, systems, and device for two-phase thermal management are provided in accordance with various embodiments. For example, some embodiments include a two-phase thermal management device that may include: a liquid chamber; one or more inlets configured to deliver a liquid to the liquid chamber; an evaporator chamber; a capillary layer positioned within the evaporator chamber and configured to spread the liquid from the liquid chamber; a liquid manifold configured to deliver the liquid from the liquid chamber to at least the capillary layer or the evaporator chamber; and/or one or more outlets configured to remove at least a vapor or a portion of the liquid from the evaporator chamber. Some embodiments that may include a two-phase thermal management device coupled with at least: a heat exchanger, a pump, a heat recuperator, a pre-heater, and/or a variable volume reservoir. Some embodiments include a two-phase thermal management method.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: March 16, 2021
    Assignee: Roccor, LLC
    Inventors: Michael Hulse, Steven Isaacs, Mark Lake, Greg Shoukas, Diego Arias, Mario Saldana
  • Patent number: 10948676
    Abstract: Devices, systems, and methods for flexible, deployable structures with optical fiber are provided in accordance with various embodiments. For example, some embodiments include a system that may include a flexible, deployable structure and one or more optical fibers coupled with the flexible, deployable structure. In some embodiments, one or more conditions of the one or more optical fibers coupled with a flexible, deployable structure may be determined. One or more conditions of the flexible, deployable structure may be determined utilizing the determined one or more conditions of the one or more optical fibers coupled with the flexible, deployable structure. The one or more conditions of the one or more optical fibers may be correlated to the one or more conditions of the flexible, deployable structure.
    Type: Grant
    Filed: March 24, 2019
    Date of Patent: March 16, 2021
    Assignee: Roccor, LLC
    Inventors: Kevin Cox, Dana Turse, Mark Lake
  • Publication number: 20190317293
    Abstract: Devices, systems, and methods for flexible, deployable structures with optical fiber are provided in accordance with various embodiments. For example, some embodiments include a system that may include a flexible, deployable structure and one or more optical fibers coupled with the flexible, deployable structure. In some embodiments, one or more conditions of the one or more optical fibers coupled with a flexible, deployable structure may be determined. One or more conditions of the flexible, deployable structure may be determined utilizing the determined one or more conditions of the one or more optical fibers coupled with the flexible, deployable structure. The one or more conditions of the one or more optical fibers may be correlated to the one or more conditions of the flexible, deployable structure.
    Type: Application
    Filed: March 24, 2019
    Publication date: October 17, 2019
    Inventors: Kevin Cox, Dana Turse, Mark Lake
  • Publication number: 20190204016
    Abstract: Methods, systems, and device for two-phase thermal management are provided in accordance with various embodiments. For example, some embodiments include a two-phase thermal management device that may include: a liquid chamber; one or more inlets configured to deliver a liquid to the liquid chamber; an evaporator chamber; a capillary layer positioned within the evaporator chamber and configured to spread the liquid from the liquid chamber; a liquid manifold configured to deliver the liquid from the liquid chamber to at least the capillary layer or the evaporator chamber; and/or one or more outlets configured to remove at least a vapor or a portion of the liquid from the evaporator chamber. Some embodiments that may include a two-phase thermal management device coupled with at least: a heat exchanger, a pump, a heat recuperator, a pre-heater, and/or a variable volume reservoir. Some embodiments include a two-phase thermal management method.
    Type: Application
    Filed: November 29, 2018
    Publication date: July 4, 2019
    Inventors: Michael Hulse, Steven Isaacs, Mark Lake, Greg Shoukas, Diego Arias
  • Publication number: 20180306530
    Abstract: Passively deployable thermal management devices, systems, and methods are provided in accordance with various embodiments. For example, some embodiments include a passively deployable radiator device that may include: one or more thermally conductive layers; and/or one or more strain energy components configured to deploy passively the one or more thermally conductive layers. The one or more thermally conductive layers may include one or more carbon layers. The one or more carbon layers may include at least one or more graphite layers or one or more graphene layers. At least the one or more graphite layers or the one or more graphene layers include at least one or more pyrolytic graphite sheets or one or more pyrolytic graphene sheets.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 25, 2018
    Inventors: William Francis, Michael Hulse, Steven Isaacs, Mark Lake, Greg Shoukas, Dana Turse
  • Patent number: 8074826
    Abstract: A linerless tank structure has a body that defines an enclosed interior volume. The body has a cylindrical section having an axis of symmetry and a dome section coupled with the cylindrical section. The construction of the pressure vessel includes multiple fiber plies. At least one of the fiber plies is a helical ply having fibers traversing the dome helically about the axis of symmetry. At least a second of the fiber plies is a braided or woven ply.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: December 13, 2011
    Assignee: Composite Technology Development, Inc.
    Inventors: John Cronin, Kaushik Mallick, Mark Lake, Mark Warner, Naseem Munshi
  • Patent number: 8061660
    Abstract: A deployable structure is disclosed. The deployable structure may include one or more slit-tube longerons; and one or more flat sheets coupled with the one or more slit-tube longerons. The one or more slit-tube longerons and the one or more flat sheets may be stowed by rolling the one or more slit-tube longerons and the one or more flat sheets together into a roll. In one embodiment, at least a portion of the one or more slit-tube longerons may be exposed when stowed. In another embodiment, the one or more slit-tube longerons may be manufactured from a shape memory material. These slit-tube longerons unroll into to a straight configuration when exposed to heat.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: November 22, 2011
    Assignee: Composite Technology Development, Inc.
    Inventors: Neal Beidleman, Gregg Freebury, Will Francis, Mark Lake, Rory Barrett, Philip N. Keller, Robert Taylor
  • Publication number: 20110192444
    Abstract: A deployable structure is disclosed. The deployable structure may include one or more slit-tube longerons; and one or more flat sheets coupled with the one or more slit-tube longerons. The one or more slit-tube longerons and the one or more flat sheets may be stowed by rolling the one or more slit-tube longerons and the one or more flat sheets together into a roll. In one embodiment, at least a portion of the one or more slit-tube longerons may be exposed when stowed. In another embodiment, the one or more slit-tube longerons may be manufactured from a shape memory material. These slit-tube longerons unroll into to a straight configuration when exposed to heat.
    Type: Application
    Filed: September 1, 2010
    Publication date: August 11, 2011
    Applicant: Composite Technology Development, Inc.
    Inventors: Neal Beidleman, Gregg Freebury, Will Francis, Mark Lake, Rory Barrett, Philip N. Keller, Robert Taylor
  • Patent number: 7806370
    Abstract: A deployable structure is disclosed. The deployable structure may include one or more slit-tube longerons; and one or more flat sheets coupled with the one or more slit-tube longerons. The one or more slit-tube longerons and the one or more flat sheets may be stowed by rolling the one or more slit-tube longerons and the one or more flat sheets together into a roll. In one embodiment, at least a portion of the one or more slit-tube longerons may be exposed when stowed. In another embodiment, the one or more slit-tube longerons may be manufactured from a shape memory material. These slit-tube longerons unroll into to a straight configuration when exposed to heat.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: October 5, 2010
    Assignee: Composite Technology Development, Inc.
    Inventors: Neal Beidleman, Gregg Freebury, Will Francis, Mark Lake, Rory Barrett, Philip N. Keller, Robert Taylor
  • Publication number: 20090314785
    Abstract: A linerless tank structure has a body that defines an enclosed interior volume. The body has a cylindrical section having an axis of symmetry and a dome section coupled with the cylindrical section. The construction of the pressure vessel includes multiple fiber plies. At least one of the fiber plies is a helical ply having fibers traversing the dome helically about the axis of symmetry. At least a second of the fiber plies is a braided or woven ply.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 24, 2009
    Applicant: Composite Technology Development, Inc.
    Inventors: John Cronin, Kaushik Mallick, Mark Lake, Mark Warner, Naseem Munshi
  • Publication number: 20070262204
    Abstract: A deployable structure is disclosed. The deployable structure may include one or more slit-tube longerons; and one or more flat sheets coupled with the one or more slit-tube longerons. The one or more slit-tube longerons and the one or more flat sheets may be stowed by rolling the one or more slit-tube longerons and the one or more flat sheets together into a roll. In one embodiment, at least a portion of the one or more slit-tube longerons may be exposed when stowed. In another embodiment, the one or more slit-tube longerons may be manufactured from a shape memory material. These slit-tube longerons unroll into to a straight configuration when exposed to heat.
    Type: Application
    Filed: April 2, 2007
    Publication date: November 15, 2007
    Applicant: Composite Technology Development, Inc.
    Inventors: Neal Beidleman, Gregg Freebury, Will Francis, Mark Lake, Rory Barrett, Philip Keller, Robert Taylor
  • Patent number: 5075128
    Abstract: Silicone application apparatus and method for applying a controlled amount of silicone emulsion to the surface of a moving web such as a continuous web in a printing press. The applicator comprises a silicone supply tank, a silicone emulsion applicator tray, a pump for pumping silicone emulsion from the supply tank to the applicator tray, and applicator rollers in contact with the silicone emulsion in the tray and the moving web to apply the silicone emulsion to the moving web. The application tray includes an operating level drain to maintain an operating level of silicone emulsion in the tray, a overflow drain at a higher level which prevents overflow of the application tray in the event that the operating level drain is clogged.
    Type: Grant
    Filed: August 11, 1989
    Date of Patent: December 24, 1991
    Assignee: Web Printing Controls Co., Inc.
    Inventors: Herman C. Gnuechtel, Brian D. Urfer, Trevor S. Baird, Mark Lake