Patents by Inventor Mark Leiber

Mark Leiber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8703639
    Abstract: This invention relates to the field of heterogeneous catalysis, and more particularly to oxidation catalysts including carbon supports having deposited thereon a noble metal and one or more optional promoters and to methods for their preparation. The invention further relates to the field of heterogeneous catalytic oxidation reactions, including the preparation of secondary amines by the catalytic oxidation of tertiary amines, such as the oxidation of an N-(phosphonomethyl)iminodiacetic acid to produce an N-(phosphonomethyl)glycine product.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: April 22, 2014
    Assignee: Monsanto Technology LLC
    Inventors: Kam-To Wan, Mark A. Leiber
  • Patent number: 8143441
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: March 27, 2012
    Assignee: Monsanto Technology LLC
    Inventors: Jerry R. Ebner, Mark A. Leiber, Kam-To Wan, Anthony Woods, Peter E. Rogers
  • Publication number: 20100130774
    Abstract: This invention relates to the field of heterogeneous catalysis, and more particularly to oxidation catalysts including carbon supports having deposited thereon a noble metal and one or more optional promoters and to methods for their preparation. The invention further relates to the field of heterogeneous catalytic oxidation reactions, including the preparation of secondary amines by the catalytic oxidation of tertiary amines, such as the oxidation of an N-(phosphonomethyl)iminodiacetic acid to produce an N-(phosphonomethyl)glycine product.
    Type: Application
    Filed: September 15, 2005
    Publication date: May 27, 2010
    Applicant: MONSANTO TECHNOLOGY LLC
    Inventors: Kam-To Wan, Mark A. Leiber, Kerry Brethauer, Jingyue Liu
  • Publication number: 20090259068
    Abstract: This invention generally relates to liquid phase oxidation processes for making N-(phosphonomethyl)glycine (also known in the agricultural chemical industry as glyphosate) and related compounds. This invention, for example, particularly relates to processes wherein an N-(phosphonomethyl)iminodiacetic acid (NPMIDA) substrate (i.e., N-(phosphonomethyl)iminodiacetic acid, a salt of N-(phosphonomethyl)iminodiacetic acid, or an ester of N-(phosphonomethyl)iminodiacetic acid) is continuously oxidized to form an N-(phosphonomethyl)glycine product (i.e., N-(phosphonomethyl)glycine, a salt of N-(phosphonomethyl)glycine, or an ester of N-(phosphonomethyl)glycine). This invention also, for example, particularly relates to processes wherein an N-(phosphonomethyl)iminodiacetic acid substrate is oxidized to form an N-(phosphonomethyl)glycine product, which, in turn, is crystallized (at least in part) in an adiabatic crystallizer.
    Type: Application
    Filed: February 4, 2009
    Publication date: October 15, 2009
    Applicant: MONSANTO TECHNOLOGY LLC
    Inventors: Eric Haupfear, Jerald D. Heise, Amy L. Jorgenson, Michael Rogers, Henry Chien, Eduardo Casanova, William Hooper, William Scholle, Juan Arhancet, Mark A. Leiber, Kent Wittler, Karen A. Wittler
  • Patent number: 7291751
    Abstract: This invention relates to the use of a supplemental promoter in conjunction with a noble-metal-containing catalyst comprising a carbon support in catalyzing liquid phase oxidation reactions, a process for making of an improved catalyst comprising such a supplemental promoter, and an improved catalyst comprising such a supplemental promoter. In a particularly preferred embodiment, a supplemental promoter (most preferably bismuth or tellurium) is used in conjunction with a noble-metal-containing catalyst comprising a carbon support in a liquid phase oxidation process wherein N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof. The benefits of such a process include increased oxidation of the formaldehyde and formic acid by-products, and, consequently, decreased final concentrations of those by-products as well as other undesirable by-products, most notably N-methyl-N-(phosphonomethyl)glycine (i.e.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: November 6, 2007
    Assignee: Monsanto Technology LLC
    Inventors: Mark A. Leiber, Kam-To Wan
  • Publication number: 20070129567
    Abstract: This invention relates to the use of a supplemental promoter in conjunction with a noble-metal-containing catalyst comprising a carbon support in catalyzing liquid phase oxidation reactions, a process for making of an improved catalyst comprising such a supplemental promoter, and an improved catalyst comprising such a supplemental promoter. In a particularly preferred embodiment, a supplemental promoter (most preferably bismuth or tellurium) is used in conjunction with a noble-metal-containing catalyst comprising a carbon support in a liquid phase oxidation process wherein N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof. The benefits of such a process include increased oxidation of the formaldehyde and formic acid by-products, and, consequently, decreased final concentrations of those by-products as well as other undesirable by-products, most notably N-methyl-N-(phosphonomethyl)glycine (i.e., “NMG”).
    Type: Application
    Filed: January 10, 2007
    Publication date: June 7, 2007
    Applicant: MONSANTO TECHNOLOGY LLC
    Inventors: Mark Leiber, Jerry Ebner, Kam-To Wan, Anthony Woods, Peter Rogers
  • Publication number: 20070100161
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Application
    Filed: June 5, 2006
    Publication date: May 3, 2007
    Applicant: Monsanto Technology LLC
    Inventors: Jerry Ebner, Mark Leiber, Kam-To Wan, Peter Rogers, Jingye Liu, William Scholle, Anthony Woods
  • Patent number: 7193107
    Abstract: This invention relates to the use of a promoter in conjunction with a noble-metal-containing catalyst comprising a carbon support in catalyzing liquid phase oxidation reactions. In a particularly preferred embodiment, the catalyst comprises a carbon support having a noble metal and tellurium at a surface of the carbon support and is used in a liquid phase oxidation process wherein N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: March 20, 2007
    Assignee: Monsanto Technology LLC
    Inventor: Mark A. Leiber
  • Patent number: 7067693
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl) glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: June 27, 2006
    Assignee: Monsanto Technology LLC
    Inventors: Jerry R. Ebner, Mark A. Leiber, Kam-To Wan, Anthony Woods, Peter E. Rogers, Jingye Liu, William A. Scholle
  • Publication number: 20060079712
    Abstract: This invention generally relates to liquid phase oxidation processes for making N-(phosphonomethyl)glycine (also known in the agricultural chemical industry as glyphosate) and related compounds. This invention, for example, particularly relates to processes wherein an N-(phosphonomethyl)iminodiacetic acid (NPMIDA) substrate (i.e., N-(phosphonomethyl)iminodiacetic acid, a salt of N-(phosphonomethyl)iminodiacetic acid, or an ester of N-(phosphonomethyl)iminodiacetic acid) is continuously oxidized to form an N-(phosphonomethyl)glycine product (i.e., N-(phosphonomethyl)glycine, a salt of N-(phosphonomethyl)glycine, or an ester of N-(phosphonomethyl)glycine). This invention also, for example, particularly relates to processes wherein an N-(phosphonomethyl)iminodiacetic acid substrate is oxidized to form an N-(phosphonomethyl)glycine product, which, in turn, is crystallized (at least in part) in an adiabatic crystallizer.
    Type: Application
    Filed: November 22, 2005
    Publication date: April 13, 2006
    Applicant: Monsanto Technology LLC
    Inventors: Eric Haupfear, Jerald Heise, Amy Jorgenson, Michael Rogers, Henry Chien, Eduardo Casanova, William Hooper, William Scholle, Juan Arhancet, Mark Leiber, Kent Wittler, Karen Wittler
  • Patent number: 7015351
    Abstract: This invention generally relates to liquid phase oxidation processes for making N-(phosphonomethyl)glycine (also known in the agricultural chemical industry as glyphosate) and related compounds. This invention, for example, particularly relates to processes wherein an N-(phosphonomethyl)iminodiacetic acid (NPMIDA) substrate (i.e., N-(phosphonomethyl)iminodiacetic acid, a salt of N-(phosphonomethyl)iminodiacetic acid, or an ester of N-(phosphonomethyl)iminodiacetic acid) is continuously oxidized to form an N-(phosphonomethyl)glycine product (i.e., N-(phosphonomethyl)glycine, a salt of N-(phosphonomethyl)glycine, or an ester of N-(phosphonomethyl)glycine). This invention also, for example, particularly relates to processes wherein an N-(phosphonomethyl)iminodiacetic acid substrate is oxidized to form an N-(phosphonomethyl)glycine product, which, in turn, is crystallized (at least in part) in an adiabatic crystallizer.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: March 21, 2006
    Assignee: Monsanto Technology LLC
    Inventors: Eric Haupfear, Jerald D. Heise, Amy L. Jorgenson, Michael Rogers, Henry Chien, Eduardo Casanova, William Hooper, William Scholle, Juan Arhancet, Mark A. Leiber, Karen A. Wittler, legal representative, Kent Wittler, deceased
  • Publication number: 20060020143
    Abstract: This invention relates to the use of a supplemental promoter in conjunction with a noble-metal-containing catalyst comprising a carbon support in catalyzing liquid phase oxidation reactions, a process for making of an improved catalyst comprising such a supplemental promoter, and an improved catalyst comprising such a supplemental promoter. In a particularly preferred embodiment, a supplemental promoter (most preferably bismuth or tellurium) is used in conjunction with a noble-metal-containing catalyst comprising a carbon support in a liquid phase oxidation process wherein N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof. The benefits of such a process include increased oxidation of the formaldehyde and formic acid by-products, and, consequently, decreased final concentrations of those by-products as well as other undesirable by-products, most notably N-methyl-N-(phosphonomethyl)glycine (i.e., “NMG”).
    Type: Application
    Filed: August 22, 2005
    Publication date: January 26, 2006
    Applicant: Monsanto Technology LLC
    Inventor: Mark Leiber
  • Patent number: 6963009
    Abstract: This invention relates to the use of a supplemental promoter in conjunction with a noble-metal-containing catalyst comprising a carbon support in catalyzing liquid phase oxidation reactions. In a particularly preferred embodiment, a supplemental promoter (most preferably bismuth or tellurium) is used in conjunction with a noble-metal-containing catalyst comprising a carbon support in a liquid phase oxidation process wherein N-(phosphonomethyl) iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof. The benefits of such a process include oxidation of the formaldehyde and formic acid by-products, and, consequently, decreased final concentrations of those by-products as well as other undesirable by-products, most notably N-methyl-N-(phosphonomethyl)glycine (i.e., “NMG”).
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: November 8, 2005
    Assignee: Monsanto Technology LLC
    Inventors: Mark A. Leiber, Jerry R. Ebner, Kam-To Wan, Anthony Woods, Peter Rogers
  • Patent number: 6956005
    Abstract: An improved catalyst comprising a noble metal and tellurium at the surface of a carbon support is provided. Also provided are novel methods for preparing such catalysts and novel processes for the use of such catalysts in liquid phase oxidation reactions, particularly the oxidation of N-(phosphonomethyl)iminodiacetic acid or a salt thereof.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: October 18, 2005
    Assignee: Monsanto Technology LLC
    Inventor: Mark A. Leiber
  • Patent number: 6927304
    Abstract: A treatment for de-oxygenating a noble metal on carbon catalyst used in liquid phase oxidation reactions which includes exposing the catalyst to a non-oxidizing environment. The de-oxygenation treatment improves catalyst performance and is particularly suited for noble metal on carbon catalysts used to catalyze the oxidative cleavage of a carboxymethyl substituent from an N-(phosphonomethyl)iminodiacetic acid substrate in an aqueous reaction mixture using an oxygen-containing gas to produce an N-(phosphonomethyl)glycine product. In one embodiment, the catalyst is exposed to a non-oxidizing environment by introducing a non-oxidizing gas and/or reducing gas into a slurry comprising the catalyst in contact with a liquid medium.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: August 9, 2005
    Assignee: Monsanto Technology LLC
    Inventor: Mark A. Leiber
  • Publication number: 20040068138
    Abstract: An improved catalyst comprising a noble metal and tellurium at the surface of a carbon support is provided. Also provided are novel methods for preparing such catalysts and novel processes for the use of such catalysts in liquid phase oxidation reactions, particularly the oxidation of N-(phosphonomethyl)iminodiacetic acid or a salt thereof.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 8, 2004
    Applicant: Monsanto Technology LLC
    Inventor: Mark A. Leiber
  • Publication number: 20030229246
    Abstract: This invention relates to the use of a supplemental promoter in conjunction with a noble-metal-containing catalyst comprising a carbon support in catalyzing liquid phase oxidation reactions, a process for making of an improved catalyst comprising such a supplemental promoter, and an improved catalyst comprising such a supplemental promoter.
    Type: Application
    Filed: May 1, 2003
    Publication date: December 11, 2003
    Applicant: Monsanto Technology LLC
    Inventors: Mark A. Leiber, Jerry R. Ebner, Kam-To Wan, Anthony Woods, Peter Rogers
  • Publication number: 20030171611
    Abstract: A treatment for de-oxygenating a noble metal on carbon catalyst used in liquid phase oxidation reactions which includes exposing the catalyst to a non-oxidizing environment. The de-oxygenation treatment improves catalyst performance and is particularly suited for noble metal on carbon catalysts used to catalyze the oxidative cleavage of a carboxymethyl substituent from an N-(phosphonomethyl)iminodiacetic acid substrate in an aqueous reaction mixture using an oxygen-containing gas to produce an N-(phosphonomethyl)glycine product. In one embodiment, the catalyst is exposed to a non-oxidizing environment by introducing a non-oxidizing gas and/or reducing gas into a slurry comprising the catalyst in contact with a liquid medium.
    Type: Application
    Filed: November 15, 2002
    Publication date: September 11, 2003
    Applicant: Monsanto Technology LLC
    Inventor: Mark A. Leiber
  • Patent number: 6603039
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: August 5, 2003
    Assignee: Monsanto Technology LLC
    Inventors: Jerry R. Ebner, Mark A. Leiber, Kam-To Wan, Peter E. Rogers, Jingyue Liu, Anthony Woods
  • Patent number: D529149
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: September 26, 2006
    Inventor: Mark Leiber