Patents by Inventor Mark Leonard O'Neill

Mark Leonard O'Neill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348736
    Abstract: Described herein are compositions for depositing a carbon-doped silicon containing film comprising: a precursor comprising at least one compound selected from the group consisting of: an organoaminosilane having a formula of R8N(SiR9LH)2, wherein R8, R9, and L are defined herein. Also described herein are methods for depositing a carbon-doped silicon-containing film using the composition wherein the method is one selected from the following: cyclic chemical vapor deposition (CCVD), atomic layer deposition (ALD), plasma enhanced ALD (PEALD) and plasma enhanced CCVD (PECCVD).
    Type: Application
    Filed: June 20, 2023
    Publication date: November 2, 2023
    Inventors: MANCHAO XIAO, XINJIAN LEI, RONALD MARTIN PEARLSTEIN, HARIPIN CHANDRA, EUGENE JOSEPH KARWACKI, BING HAN, MARK LEONARD O'NEILL
  • Patent number: 11725111
    Abstract: Described herein are compositions for depositing a carbon-doped silicon containing film comprising: a precursor comprising at least one compound selected from the group consisting of: an organoaminosilane having a formula of R8N(SiR9LH)2, wherein R8, R9, and L are defined herein. Also described herein are methods for depositing a carbon-doped silicon-containing film using the composition wherein the method is one selected from the following: cyclic chemical vapor deposition (CCVD), atomic layer deposition (ALD), plasma enhanced ALD (PEALD) and plasma enhanced CCVD (PECCVD).
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: August 15, 2023
    Assignee: Versum Materials US, LLC
    Inventors: Manchao Xiao, Xinjian Lei, Ronald Martin Pearlstein, Haripin Chandra, Eugene Joseph Karwacki, Bing Han, Mark Leonard O'Neill
  • Patent number: 11692110
    Abstract: Chemical mechanical planarization (CMP) polishing compositions, methods and systems are provided to reduce oxide trench dishing and improve over-polishing window stability. High and tunable silicon oxide removal rates, low silicon nitride removal rates, and tunable SiO2:SiN selectivity are also provided. The compositions use a unique combination of abrasives such as ceria coated silica particles and chemical additives such as maltitol, lactitol, maltotritol or combinations as oxide trench dishing reducing additives.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: July 4, 2023
    Assignee: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Publication number: 20230193079
    Abstract: Shallow Trench Isolation (STI) chemical mechanical planarization (CMP) polishing compositions, methods and systems of use therefore are provided. The CMP polishing composition comprises abrasives of ceria coated inorganic oxide particles, such as ceria-coated silica; and dual chemical additives for providing the tunable oxide film removal rates and tunable SiN film removal rates; low oxide trench dishing, and high oxide: SiN selectivity. Dual chemical additives comprise at least one silicone-containing compound comprising at least one of (1) ethylene oxide and propylene oxide (EO-PO) group, and at least one of substituted ethylene diamine group on the same molecule; and (2) at least one non-ionic organic molecule having at least two, preferably at least four hydroxyl functional groups.
    Type: Application
    Filed: May 25, 2021
    Publication date: June 22, 2023
    Inventors: XIAOBO SHI, KRISHNA P. MURELLA, JOSEPH D. ROSE, HONGJUN ZHOU, MARK LEONARD O'NEILL
  • Patent number: 11667839
    Abstract: Chemical mechanical planarization (CMP) polishing compositions, methods and systems are provided to reduce oxide trench dishing and improve over-polishing window stability. High and tunable silicon oxide removal rates, low silicon nitride removal rates, and tunable SiO2:SiN selectivity are also provided. The compositions use unique chemical additives, such as maltitol, lactitol, maltotritol, ribitol, D-sorbitol, mannitol, dulcitol, iditol, D-(?)-Fructose, sorbitan, sucrose, ribose, Inositol, glucose, D-arabinose, L-arabinose, D-mannose, L-mannose, meso-erythritol, beta-lactose, arabinose, or combinations thereof as oxide trench dishing reducing additives.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: June 6, 2023
    Assignee: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Patent number: 11643599
    Abstract: This invention pertains to slurries, methods and systems that can be used in chemical mechanical planarization (CMP) of tungsten containing semiconductor device. Using the CMP slurries with additives to counter lowering of pH by tungsten polishing byproducts and maintain pH 4 or higher, the erosion of dense metal (such as tungsten) structures can be greatly diminished.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: May 9, 2023
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Chun Lu, Xiaobo Shi, Dnyanesh Chandrakant Tamboli, Reinaldo Mario Machado, Mark Leonard O'Neill, Matthias Stender
  • Patent number: 11626279
    Abstract: Described herein are low temperature processed high quality silicon containing films. Also disclosed are methods of forming silicon containing films at low temperatures. In one aspect, there are provided silicon-containing film having a thickness of about 2 nm to about 200 nm and a density of about 2.2 g/cm3 or greater wherein the silicon-containing thin film is deposited by a deposition process selected from a group consisting of chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), cyclic chemical vapor deposition (CCVD), plasma enhanced cyclic chemical vapor deposition (PECCVD, atomic layer deposition (ALD), and plasma enhanced atomic layer deposition (PEALD), and the vapor deposition is conducted at one or more temperatures ranging from about 25° C. to about 400° C. using an alkylsilane precursor selected from the group consisting of diethylsilane, triethylsilane, and combinations thereof.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 11, 2023
    Assignee: Versum Materials US, LLC
    Inventors: Anupama Mallikarjunan, Andrew David Johnson, Meiliang Wang, Raymond Nicholas Vrtis, Bing Han, Xinjian Lei, Mark Leonard O'Neill
  • Patent number: 11608451
    Abstract: Shallow Trench Isolation (STI) chemical mechanical planarization (CMP) polishing compositions, methods and systems of use therefore are provided. The CMP polishing composition comprises abrasives of ceria coated inorganic metal oxide particles, such as ceria-coated silica; and dual chemical additives for providing the tunable oxide film removal rates and tunable SiN film removal rates. Chemical additives comprise at least one nitrogen-containing aromatic heterocyclic compound and at least one non-ionic organic molecule having more than one hydroxyl functional group organic.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: March 21, 2023
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Publication number: 20230020073
    Abstract: High oxide film removal rate Shallow Trench Isolation (STI) chemical mechanical planarization (CMP) polishing compositions, methods, and systems of use therefore are provided. The CMP polishing composition comprises abrasives of ceria coated inorganic oxide particles, such as ceria-coated silica; and a chemical additive for providing a high oxide film removal rate. The chemical additive is a gelatin molecule possessing negative and positive charges on the same molecule.
    Type: Application
    Filed: December 2, 2020
    Publication date: January 19, 2023
    Applicant: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Patent number: 11549034
    Abstract: The present invention provides Chemical Mechanical Planarization Polishing (CMP) compositions for Shallow Trench Isolation (STI) applications. The CMP compositions contain ceria coated inorganic metal oxide particles as abrasives, such as ceria-coated silica particles; chemical additive selected from the first group of non-ionic organic molecules multi hydroxyl functional groups in the same molecule; chemical additives selected from the second group of aromatic organic molecules with sulfonic acid group or sulfonate salt functional groups and combinations thereof; water soluble solvent; and optionally biocide and pH adjuster; wherein the composition has a pH of 2 to 12, preferably 3 to 10, and more preferably 4 to 9.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: January 10, 2023
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Patent number: 11401441
    Abstract: Provided are Chemical Mechanical Planarization (CMP) formulations that offer high and tunable Cu removal rates and low copper dishing for the broad or advanced node copper or Through Silica Via (TSV). The CMP compositions provide high selectivity of Cu film vs. other barrier layers, such as Ta, TaN, Ti, and TiN, and dielectric films, such as TEOS, low-k, and ultra low-k films. The CMP polishing formulations comprise solvent, abrasive, at least three chelators selected from the group consisting of amino acids, amino acid derivatives, organic amine, and combinations therefor; wherein at least one chelator is an amino acid or an amino acid derivative. Additionally, organic quaternary ammonium salt, corrosion inhibitor, oxidizer, pH adjustor and biocide are used in the formulations.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 2, 2022
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, Laura M. Matz, Chris Keh-Yeuan Li, Ming-Shih Tsai, Pao-Chia Pan, Chad Chang-Tse Hsieh, Rung-Je Yang, Blake J. Lew, Mark Leonard O'Neill, Agnes Derecskei
  • Publication number: 20220195245
    Abstract: Chemical Mechanical Planarization (CMP) polishing compositions, methods and systems are used to polish low-k or ultra-low-k films with reasonable high removal rates while to polish oxide and nitride films with relative low removal rates. The compositions use 5 abrasive, chemical additives to boost low-k or ultra-low-k film removal rates and suppress oxide and nitride film removal rates for achieving high selectivity, such as low-: TEOS, ultra-low-K: TEOS, and low-k: SiN or ultra-low-k: SiN.
    Type: Application
    Filed: April 16, 2020
    Publication date: June 23, 2022
    Applicant: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Chia-Chien Lee, Mark Leonard O'Neill
  • Patent number: 11326076
    Abstract: Shallow Trench Isolation (STI) chemical mechanical planarization (CMP) polishing compositions, methods and systems of use therefore are provided. The CMP polishing composition comprises abrasives of ceria coated inorganic metal oxide particles, such as ceria-coated silica; and dual chemical additives for providing high oxide film removal rate. The dual chemical additives comprise gelatin compounds possessing negative and positive charges on the same molecule, and non-ionic organic molecules having multi hydroxyl functional groups in the same molecule.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: May 10, 2022
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Patent number: 11254839
    Abstract: The present invention discloses STI CMP polishing compositions, methods and systems that significantly reduce oxide trench dishing and improve over-polishing window stability in addition to provide high and tunable silicon oxide removal rates, low silicon nitride removal rates, and tunable high selectivity of SiO2:SiN through the use of an unique combination of ceria inorganic oxide particles, such as ceria coated silica particles as abrasives, and an oxide trench dishing reducing additive of poly(methacrylic acids), its derivatives, its salts, or combinations thereof.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 22, 2022
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, Joseph D. Rose, Hongjun Zhou, Krishna P. Murella, Mark Leonard O'Neill
  • Publication number: 20220041870
    Abstract: Described herein are compositions for depositing a carbon-doped silicon containing film comprising: a precursor comprising at least one compound selected from the group consisting of: an organoaminosilane having a formula of R8N(SiR9LH)2, wherein R8, R9, and L are defined herein. Also described herein are methods for depositing a carbon-doped silicon-containing film using the composition wherein the method is one selected from the following: cyclic chemical vapor deposition (CCVD), atomic layer deposition (ALD), plasma enhanced ALD (PEALD) and plasma enhanced CCVD (PECCVD).
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: VERSUM MATERIALS US, LLC
    Inventors: MANCHAO XIAO, XINJIAN LEI, RONALD MARTIN PEARLSTEIN, HARIPIN CHANDRA, EUGENE JOSEPH KARWACKI, BING HAN, MARK LEONARD O'NEILL
  • Publication number: 20210407793
    Abstract: Described herein are precursors and methods for forming silicon-containing films. In one aspect, the precursor comprises a compound represented by one of following Formulae A through E below: In one particular embodiment, the organoaminosilane precursors are effective for a low temperature (e.g., 350° C. or less), atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) of a silicon-containing film. In addition, described herein is a composition comprising an organoaminosilane described herein wherein the organoaminosilane is substantially free of at least one selected from the amines, halides (e.g., Cl, F, I, Br), higher molecular weight species, and trace metals.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Applicant: VERSUM MATERIALS US, LLC
    Inventors: MARK LEONARD O'NEILL, MANCHAO XIAO, XINJIAN LEI, RICHARD HO, HARIPIN CHANDRA, MATTHEW R. MACDONALD, MEILIANG WANG
  • Patent number: 11180678
    Abstract: Present invention provides Chemical Mechanical Planarization Polishing (CMP) compositions for Shallow Trench Isolation (STI) applications. The CMP compositions contain ceria coated inorganic oxide particles as abrasives, such as ceria-coated silica particles; chemical additive selected from the group consisting of an organic acetylene molecule containing an acetylene bond and at least two or multi ethoxylate functional groups with terminal hydroxyl groups, an organic molecule with at least two or multi hydroxyl functional groups in the same molecule, and combinations thereof; water soluble solvent; and optionally biocide and pH adjuster; wherein the composition has a pH of 2 to 12, preferably 3 to 10, and more preferably 4 to 9.
    Type: Grant
    Filed: October 27, 2019
    Date of Patent: November 23, 2021
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Publication number: 20210324270
    Abstract: Chemical mechanical planarization (CMP) polishing compositions, methods and systems are provided to reduce oxide trench dishing and improve over-polishing window stability. High and tunable silicon oxide removal rates, low silicon nitride removal rates, and tunable SiO2:SiN selectivity are also provided. The compositions use unique chemical additives, such as maltitol, lactitol, maltotritol, ribitol, D-sorbitol, mannitol, dulcitol, iditol, D-(?)-Fructose, sorbitan, sucrose, ribose, Inositol, glucose, D-arabinose, L-arabinose, D-mannose, L-mannose, meso-erythritol, beta-lactose, arabinose, or combinations thereof as oxide trench dishing reducing additives.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 21, 2021
    Applicant: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Publication number: 20210309885
    Abstract: Chemical mechanical planarization (CMP) polishing compositions, methods and systems are provided to reduce oxide trench dishing and improve over-polishing window stability. High and tunable silicon oxide removal rates, low silicon nitride removal rates, and tunable SiO2: SiN selectivity are also provided. The compositions use a unique combination of abrasives such as ceria coated silica particles and chemical additives such as maltitol, lactitol, maltotritol or combinations as oxide trench dishing reducing additives.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Applicant: Versum Materials US, LLC
    Inventors: Xiaobo Shi, Krishna P. Murella, Joseph D. Rose, Hongjun Zhou, Mark Leonard O'Neill
  • Patent number: 11139162
    Abstract: Described herein are precursors and methods for forming silicon-containing films. In one aspect, the precursor comprises a compound represented by one of following Formulae A through E below: In one particular embodiment, the organoaminosilane precursors are effective for a low temperature (e.g., 350° C. or less), atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) of a silicon-containing film. In addition, described herein is a composition comprising an organoaminosilane described herein wherein the organoaminosilane is substantially free of at least one selected from the amines, halides (e.g., Cl, F, I, Br), higher molecular weight species, and trace metals.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: October 5, 2021
    Assignee: Versum Materials US, LLC
    Inventors: Mark Leonard O'Neill, Manchao Xiao, Xinjian Lei, Richard Ho, Haripin Chandra, Matthew R. MacDonald, Meiliang Wang