Patents by Inventor Mark M. Mleziva

Mark M. Mleziva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220015960
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a nonwoven material may comprise a plurality of fibers and may further comprise an opposing first surface and a second surface, an apertured zone comprising a plurality of nodes extending away from a base plane on the first surface, a plurality of connecting ligaments interconnecting the plurality of nodes, and a plurality of openings providing a percent open area for the apertured zone that is greater than about 15%, as determined by the Material Sample Analysis Test Method. The material may further comprise a first and second side zones with the nonwoven material having a material width and the first and second side zones having first and second side zone widths, and wherein each of the first and second side zone widths are between about 5% and about 25% of the nonwoven material width.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 20, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith
  • Publication number: 20220015961
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a nonwoven material comprising a plurality of fibers can include a first surface and a second surface. The first surface can be opposite from the second surface. The nonwoven material can include a plurality of nodes extending away from a base plane on the first surface. At least a majority of the plurality of nodes have an anisotropy value greater than 1.0 as determined by the Node Analysis Test Method.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 20, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva
  • Publication number: 20220008262
    Abstract: Three dimensional nonwoven materials and absorbent articles comprising such materials are disclosed. In one embodiment, an absorbent article may comprise an outer cover, a bodyside liner, an absorbent body, and a nonwoven material coupled to the bodyside liner. The nonwoven material may comprise an apertured zone providing a percent open area for the apertured zone that is greater than about 15%. The nonwoven material may be coupled to liner by a front waist bond forming a front waist bonding region which extends through the apertured zone and a rear waist bond forming a rear waist bonding region, wherein the rear waist bonding region has a length that is between about 2% and about 10% of the material length and the front waist bonding region has a length that is between about 20% and about 50% of the material length.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 13, 2022
    Inventors: Antonio J. CARRILLO OJEDA, Davis Dang H. NHAN, Neil T. SCHOLL, Vasily A. TOPOLKARAEV, David G. BIGGS, Patrick D. ABNEY, Jonathan A. BAKER, Mark M. MLEZIVA, Steven J. ROFFERS, Dustin J. SMITH
  • Publication number: 20220000680
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. An absorbent article can include an absorbent body and an outer cover. The absorbent article can also include a fluid-entangled nonwoven material. The absorbent body can be disposed between the fluid-entangled nonwoven material and the outer cover. The fluid-entangled nonwoven can include a first surface and a second surface. The nonwoven material can also include a plurality of nodes extending away from abase plane on the first surface towards the absorbent body. The nonwoven material can further include a plurality of openings extending from the first surface to the second surface through the fluid-entangled nonwoven material. Individual openings of the plurality of openings can be disposed between adjacent nodes of the plurality of nodes.
    Type: Application
    Filed: November 27, 2019
    Publication date: January 6, 2022
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith
  • Publication number: 20220002911
    Abstract: A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed front a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Vasily A. Topolkaraev, Mark M. Mleziva, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carillo
  • Publication number: 20210388547
    Abstract: Three dimensional nonwoven materials and methods of manufacturing such materials are disclosed. In one embodiment, a method can include providing a precursor web that includes a plurality of fibers and transferring the precursor web to a forming surface having a plurality of forming holes. The method can also include directing a plurality of pressurized fluid streams of entangling fluid in a direction towards the precursor web on the forming surface to move at least some of the fibers into the plurality of forming holes to create a fluid entangled web. The method can further include removing the fluid entangled web from the forming surface such that the at least some of the fibers moved into the plurality of forming holes provide a plurality of nodes. The plurality of nodes can have an anisotropy value greater than 1.0 as determined by the Node Analysis Test Method.
    Type: Application
    Filed: November 27, 2019
    Publication date: December 16, 2021
    Inventors: Antonio J. Carrillo Ojeda, Davis Dang H. Nhan, Neil T. Scholl, Vasily A. Topolkaraev, David G. Biggs, Mark M. Mleziva, Steven J. Roffers, Dustin J. Smith
  • Patent number: 11186927
    Abstract: A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed from a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: November 30, 2021
    Assignee: Kimberly Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Mark M. Mleziva, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carillo
  • Publication number: 20210362125
    Abstract: An absorbent article includes an absorbent member positioned between a topsheet and a backsheet. The absorbent member contains at least one layer that includes superabsorbent particles containing a porous network that includes a plurality of nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers, wherein the superabsorbent particles exhibit a Vortex Time of about 80 seconds or less and a free swell gel bed permeability (GBP) of 5 darcys or more, of 10 darcys or more, of 60 darcys or more, or of 90 darcys or more.
    Type: Application
    Filed: June 27, 2018
    Publication date: November 25, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Austin N. Pickett, Karen Goeders, Mark M. Mleziva, Theodore T. Tower, WanDuk Lee, Neil T. Scholl, Lori A. Eslinger, Yuriy Galabura, Dave Soerens
  • Patent number: 11124641
    Abstract: A water-dispersible injection-moldable composition includes partially-hydrolyzed polyvinyl alcohol (PVOH), polyethylene glycol (PEG), plasticizer, and a hydrophobic polymeric component, wherein the composition has a melt flow index of 5-180. The hydrophobic polymeric component can be a colorant within an ethylene matrix or polyethylene. The composition is flushable according to Guidance Document for Assessing the Flushability of Nonwoven Consumer Products (INDA and EDANA, 2006); Test FG 522.2 Tier 2—Slosh Box Disintegration Test. The PVOH has a hydrolysis of 87% to 89%.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 21, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Patent number: 11123228
    Abstract: A flushable tampon applicator product includes an outer tube for housing a tampon; an inner tube, at least a portion of which extends into the outer tube, wherein the outer tube includes an outer, body-contacting surface, wherein the inner tube is moveable relative to the outer tube and configured to expel a tampon from the outer tube, and wherein at least one of the outer tube and the inner tube comprises a thermoplastic composition including partially-hydrolyzed polyvinyl alcohol (PVOH), polyethylene glycol (PEG), a plasticizer, and a hydrophobic polymeric component, wherein at least one of the outer tube and the inner tube is a molded part; and a wrapper material configured for storage under high and low moisture storage conditions, the wrapper material having a water vapor transmission rate of less than 0.05 g/100 in2/day.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 21, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Alphonse DeMarco, Gregory J. Wideman, Peter S. Lortscher, Austin N. Pickett, Mark M. Mleziva, Garry R. Woltman, Michael G. Shlepr
  • Publication number: 20210252478
    Abstract: Superabsorbent particles have a median size of from about 50 to about 2,000 micrometers and contain a porous network that includes a plurality of nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers, wherein the superabsorbent particles exhibit a Vortex Time of about 80 seconds or less and a free swell gel bed permeability (GBP) of 5 darcys or more, of 10 darcys or more, of 20 darcys or more, of 30 darcys or more, of 60 darcys or more, or of 90 darcys or more. A method for forming such superabsorbent particles includes forming a composition that contains a superabsorbent polymer and a solvent system; contacting the composition with a non-solvent system to initiate formation of the porous network through phase inversion; removing non-solvent from the composition; and surface crosslinking the superabsorbent particles.
    Type: Application
    Filed: June 27, 2018
    Publication date: August 19, 2021
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Austin N. Pickett, Karen Goeders, Mark M. Mleziva, Theodore T. Tower, WanDuk Lee, Neil T. Scholl, Lori A. Eslinger, Yuriy Galabura, Dave Soerens, Kazuhiro Takahashi, Yusuke Ueda, Megumi Tomioka
  • Patent number: 11058791
    Abstract: A thin nanocomposite film for use in an absorbent article is provided. The film contains an ethylene polymer, a nanoclay having an organic surface treatment, and a compatibilizer that includes an olefin polymer containing an ethylenically unsaturated carboxylic acid monomer. The present inventors have discovered that through selective control over the particular type and concentration of the components used to form the film, as well as the manner in which it is formed, the modulus and tensile strength of the film can be significantly improved without having an adverse impact on its ductility.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 13, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Feng Chen, James Hongxue Wang, Gregory J. Wideman, Michael J. Faulks, Mark M. Mleziva
  • Patent number: 11028246
    Abstract: An absorbent article containing a polyolefin film is provided. The polyolefin film is formed by a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: June 8, 2021
    Assignee: Kimberly-Clark, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Antonio J. Carrillo, Mark M. Mleziva, Andy J. Meyer
  • Patent number: 11001944
    Abstract: A polyolefin fiber that is formed by a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 11, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Antonio J. Carrillo, Mark M. Mleziva
  • Patent number: 10869790
    Abstract: A package that contains a wrapper material that defines an interior cavity within which an absorbent article is removably positioned is provided. The wrapper material is formed from a film that includes a polymer composition containing at least one ethylene polymer and at least one nanofiller. The present inventors have discovered that through selective control over the particular type and concentration of these components, as well as the manner in which it is formed, the resulting package may generate a relatively low degree of noise when physically deformed.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 22, 2020
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Feng Chen, Michael J. Faulks, Mark M. Mleziva, Gregory J. Wideman
  • Patent number: 10857705
    Abstract: A technique for initiating the formation of pores in a polymeric material that contains a thermoplastic composition is provided. The thermoplastic composition contains microinclusion and nanoinclusion additives dispersed within a continuous phase that includes a matrix polymer. To initiate pore formation, the polymeric material is mechanically drawn (e.g., bending, stretching, twisting, etc.) to impart energy to the interface of the continuous phase and inclusion additives, which enables the inclusion additives to separate from the interface to create the porous network. The material is also drawn in a solid state in the sense that it is kept at a temperature below the melting temperature of the matrix polymer.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: December 8, 2020
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Ryan J McEneany, Neil T. Scholl, Antonio J. Carrillo, Mark M. Mleziva
  • Patent number: 10752745
    Abstract: A polyolefin packaging film is provided. The polyolefin film is formed by a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: August 25, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Mark M. Mleziva, Brent M. Thompson
  • Publication number: 20200188195
    Abstract: An absorbent article comprising an absorbent member positioned between a topsheet and a backsheet is provided. The absorbent member contains at least one layer that comprises superabsorbent particles containing nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers.
    Type: Application
    Filed: July 20, 2018
    Publication date: June 18, 2020
    Inventors: Yuriy Galabura, Austin N. Pickett, Karen Goeders, Vasily A. Topolkaraev, Dave Soerens, Theodore T. Tower, Mark M. Mleziva, WanDuk Lee
  • Publication number: 20200171462
    Abstract: Superabsorbent particles having a median size of from about 50 to about 2,000 micrometers and containing nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers are provided. The superabsorbent particles exhibit a Vortex Time of about 80 seconds or less.
    Type: Application
    Filed: July 20, 2018
    Publication date: June 4, 2020
    Inventors: Yuriy Galabura, Austin N. Pickett, Karen Goeders, Vasily A. Topolkaraev, Dave Soerens, Theodore T. Tower, Mark M. Mleziva, WanDuk Lee
  • Publication number: 20200147258
    Abstract: A feminine care absorbent article comprising an absorbent member positioned between a topsheet and a baffle is provided. The absorbent member contains at least one layer that comprises superabsorbent particles containing nanopores having an average cross-sectional dimension of from about 10 to about 500 nanometers.
    Type: Application
    Filed: July 20, 2018
    Publication date: May 14, 2020
    Inventors: Yuriy Galabura, Austin N. Pickett, WanDuk Lee, Vasily A. Topolkaraev, Palani Raj R. Wallajapet, Cynthia S. Krueger, Mark M. Mleziva, Richard R. Cohen