Patents by Inventor Mark N. Howell
Mark N. Howell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9765746Abstract: An internal combustion engine including a starter is shown. A method for monitoring the starter includes determining electrical energy consumed by pinion and motor solenoids operative to activate and rotate a pinion gear of an electrically-powered motor meshingly engageable to a starter ring gear portion of a flywheel of the engine during an engine starting event. Current ringing in the pinion and motor solenoids is monitored during the engine starting even, and a fault is identified in the pinion and motor solenoids based upon the current ringing and the electrical energy consumption of the starter during the engine starting event.Type: GrantFiled: August 19, 2016Date of Patent: September 19, 2017Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Youssef A. Ghoneim, Mark N. Howell
-
Patent number: 9506445Abstract: A method for monitoring the starter motor includes determining starter motor resistance associated with an engine starting event and determining a back-emf for the starter motor based upon the starter motor resistance. A state of health of the starter motor corresponding to the back-emf of the starter motor and engine cranking time is determined. Engine stop/start functionality is controlled based upon the state of health of the starter motor.Type: GrantFiled: January 30, 2014Date of Patent: November 29, 2016Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Youssef A. Ghoneim, Mark N. Howell
-
Patent number: 9458815Abstract: An internal combustion engine including a starter is shown. A method for monitoring the starter includes determining electrical energy consumed by pinion and motor solenoids operative to activate and rotate a pinion gear of an electrically-powered motor meshingly engageable to a starter ring gear portion of a flywheel of the engine during an engine starting event. Current ringing in the pinion and motor solenoids is monitored during the engine starting even, and a fault is identified in the pinion and motor solenoids based upon the current ringing and the electrical energy consumption of the starter during the engine starting event.Type: GrantFiled: July 17, 2014Date of Patent: October 4, 2016Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Youssef A. Ghoneim, Mark N. Howell
-
Patent number: 9349227Abstract: A method for detecting and locating an open-wire fault within a vehicle subsystem, is provided. The method compares an output voltage of a low-pass filter circuit of the vehicle subsystem to a threshold voltage; detects that an open-wire fault exists in the vehicle subsystem when the output voltage is not less than the threshold voltage; determines a capacitance value of the low-pass filter circuit; and performs a lookup, using the capacitance value, to determine the location of the detected open wire fault.Type: GrantFiled: December 9, 2013Date of Patent: May 24, 2016Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Timothy D. Julson, Mark N. Howell, Shuo Huang
-
Patent number: 9189896Abstract: Methods and systems are provided for vehicular communications. The systems include a server and a controller in a vehicle. The controller is configured to receive data from vehicular components and transmit the data to the remote server. In a normal mode, the data is transmitted in accordance with a normal frequency of events, while in an abnormal mode, the data is transmitted in accordance with an abnormal frequency of events. The abnormal frequency is different from the normal frequency. The abnormal mode is set in response to an event trigger denoting a fault of at least one component.Type: GrantFiled: December 5, 2013Date of Patent: November 17, 2015Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, GENERAL MOTORS LLCInventors: Youssef A. Ghoneim, Mutasim A. Salman, Mark N. Howell, Yilu Zhang, Scott W. Otterson
-
Patent number: 9097767Abstract: A system and method for determining the health of a DC motor, such as a DC motor on a vehicle. The method includes measuring a current output signal of the DC motor, determining a mean of the measured current signal over a predetermined time period and determining a variance estimation of the mean of the measured current. The method then uses the variance estimation to determine the health of the motor, including an end-of-life prediction of the motor, and uses the mean of the measured current to determine the performance (torque) of the motor.Type: GrantFiled: January 9, 2012Date of Patent: August 4, 2015Assignee: GM Global Technology Operations LLCInventors: Mark N. Howell, Pattada A. Kallappa, Avoki Omekanda
-
Patent number: 9058038Abstract: A method includes collecting vehicle health data from a plurality of vehicles. A peer group is identified among the plurality of vehicles. The collected vehicle health data from the peer group into a collaborative vehicle health model, the collaborative vehicle health model being applicable to a current vehicle to predict a state of at least a component of the current vehicle.Type: GrantFiled: March 29, 2012Date of Patent: June 16, 2015Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Yilu Zhang, Mark N. Howell, Xidong Tang, Fan Bai, Xinyu Du, Satnam Singh
-
Patent number: 9032935Abstract: A method for monitoring the fuel pump includes estimating a pump speed and a nominal pump motor current in relation to a pump motor control signal and a fuel pressure. An armature resistance and a back-emf constant for the electric motor are determined corresponding to the estimated pump speed, a monitored pump motor current, and the pump motor control signal. A nominal armature resistance and a nominal back-emf constant for the electric motor are adjusted in relation to a pump motor temperature. Residuals are calculated based upon the adjusted nominal armature resistance, the adjusted nominal back-emf constant for the electric motor, the estimated armature resistance and the estimated back-emf constant for the electric motor. The residuals are compared with corresponding thresholds. A fault in the electric motor is detected based upon the comparisons of the residuals with the corresponding thresholds.Type: GrantFiled: November 3, 2011Date of Patent: May 19, 2015Assignee: GM Global Technology Operations LLCInventors: Youssef A. Ghoneim, Mark N. Howell
-
Patent number: 8775052Abstract: A method for isolating an actual sensor bias in a fuel delivery system having a fuel pump includes monitoring first, second and third fuel pump parameters, detecting first and second fuel pump sensor biases based on the monitored first, second and third fuel pump parameters, modeling a fourth fuel pump modeled parameter based on the monitored second and third fuel pump parameters, and isolating the actual sensor bias in one of the detected first and second fuel pump biases based on the monitored third fuel pump parameter and the modeled fourth fuel pump modeled parameter.Type: GrantFiled: December 15, 2011Date of Patent: July 8, 2014Assignee: GM Global Technology Operations LLCInventors: Youssef A. Ghoneim, Mark N. Howell
-
Patent number: 8560165Abstract: A cooperative diagnostic and prognosis system for generating a prognosis of at least one component in a vehicle. An in-vehicle diagnostic unit determines a diagnostic signature of the component each time an occurrence of a condition is triggered and transmits the diagnostic signature to an off-board diagnostic unit. The off-vehicle diagnostic unit determines a SOH of the component and a rate-of-change in the SOH of the component. The off-vehicle diagnostic unit determines whether the rate-of-change in the SOH is greater than a threshold. The off-vehicle diagnostic unit requests additional information from the vehicle in response to the rate-of-change in the SOH being greater than the threshold. The additional information relating to operating parameter data associated with the component. The off-vehicle diagnostic unit receives the requested information and predicts a time-to-failure of the component.Type: GrantFiled: January 17, 2012Date of Patent: October 15, 2013Assignee: GM Global Technology Operations LLCInventors: Mutasim A. Salman, Yilu Zhang, Mark N. Howell, Xidong Tang, Youseff A. Ghoneim, Walter A. Dorfstatter
-
Publication number: 20130262067Abstract: A method includes collecting vehicle health data from a plurality of vehicles. A peer group is identified among the plurality of vehicles. The collected vehicle health data from the peer group into a collaborative vehicle health model, the collaborative vehicle health model being applicable to a current vehicle to predict a state of at least a component of the current vehicle.Type: ApplicationFiled: March 29, 2012Publication date: October 3, 2013Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Yilu ZHANG, Mark N. Howell, Xidong Tang, Fan Bai, Xinyu Du, Satnam Singh
-
Publication number: 20130184929Abstract: A cooperative diagnostic and prognosis system for generating a prognosis of at least one component in a vehicle. An in-vehicle diagnostic unit determines a diagnostic signature of the component each time an occurrence of a condition is triggered and transmits the diagnostic signature to an off-board diagnostic unit. The off-vehicle diagnostic unit determines a SOH of the component and a rate-of-change in the SOH of the component. The off-vehicle diagnostic unit determines whether the rate-of-change in the SOH is greater than a threshold. The off-vehicle diagnostic unit requests additional information from the vehicle in response to the rate-of-change in the SOH being greater than the threshold. The additional information relating to operating parameter data associated with the component. The off-vehicle diagnostic unit receives the requested information and predicts a time-to-failure of the component.Type: ApplicationFiled: January 17, 2012Publication date: July 18, 2013Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Mutasim A. Salman, Yilu Zhang, Mark N. Howell, Xidong Tang, Youssef A. Ghoneim, Walter A. Dorfstatter
-
Publication number: 20130179104Abstract: A system and method for determining the health of a DC motor, such as a DC motor on a vehicle. The method includes measuring a current output signal of the DC motor, determining a mean of the measured current signal over a predetermined time period and determining a variance estimation of the mean of the measured current. The method then uses the variance estimation to determine the health of the motor, including an end-of-life prediction of the motor, and uses the mean of the measured current to determine the performance (torque) of the motor.Type: ApplicationFiled: January 9, 2012Publication date: July 11, 2013Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Mark N. Howell, Pattada Kallappa, Avoki Omekanda
-
Patent number: 8463485Abstract: A method is provided for enhancing service diagnostics utilizing service repair data of previously serviced vehicles. Service repair data of previously serviced vehicles is obtained from a memory storage device. The service data is compiled into a service diagnostic code dataset and a service labor code dataset. The service diagnostic code dataset and service labor code dataset are categorized into an electronic data table. Respective combinations are formed in the electronic data table. An aggregate count is determined for each respective combination in the electronic data table. Either of a respective diagnostic code or a respective service labor code is identified having a correlation with more than one of either service diagnostic codes or service labor codes. At least one of a service repair procedure used to repair the vehicle or a respective service diagnostic code used to identify the fault is modified in response to analyzing the respective combinations.Type: GrantFiled: November 10, 2010Date of Patent: June 11, 2013Assignee: GM Global Technology Operations LLCInventors: Mark N. Howell, Mutasim A. Salman, Xidong Tang, Yilu Zhang, Soumen De, Sugato Chakrabarty, Rahul Chougule, Pulak Bandyopadhyay, Steven W. Holland
-
Publication number: 20130112173Abstract: An electric motor is configured to provide mechanical power to a fuel pump. A method for monitoring the fuel pump includes estimating a pump speed and a nominal pump motor current in relation to a pump motor control signal and a fuel pressure. An armature resistance and a back-emf constant for the electric motor are determined corresponding to the estimated pump speed, a monitored pump motor current, and the pump motor control signal. A nominal armature resistance and a nominal back-emf constant for the electric motor are adjusted in relation to a pump motor temperature. A plurality of residuals are calculated based upon the adjusted nominal armature resistance, the adjusted nominal back-emf constant for the electric motor, the estimated armature resistance and the estimated back-emf constant for the electric motor. The residuals are compared with corresponding thresholds. A fault in the electric motor is detected based upon the comparisons of the residuals with the corresponding thresholds.Type: ApplicationFiled: November 3, 2011Publication date: May 9, 2013Applicant: GM GLOBAL TECHNOLOGY OPERATION LLCInventors: Youssef A. Ghoneim, Mark N. Howell
-
Patent number: 8433672Abstract: A system and method for determining the health of a component includes retrieving measured health signatures from the component, retrieving component usage variables, estimating component health signatures using an aging model, determining an aging derivative using the aging model and calculating an aging error based on the estimated component health signatures, the aging derivative and the measured health signatures.Type: GrantFiled: February 17, 2010Date of Patent: April 30, 2013Assignee: GM Global Technology Operations LLCInventors: Kwang-Keun Shin, Mutasim A. Salman, Yilu Zhang, Xidong Tang, Hong S. Bae, Mark N. Howell, Satish Rajagopalan
-
Patent number: 8380418Abstract: A disc braking system of a vehicle determines the actual temperature of a brake rotor. The disc braking system compares the actual temperature of the brake rotor to a critical temperature of the brake rotor. The critical temperature of the brake rotor is a temperature above which damage and/or warping to the brake rotor may occur. The disc braking system applies a corrective measure to prevent damage to the brake rotor when the actual temperature of the brake rotor is greater than the critical temperature of the brake rotor. The corrective measure may include, but is not limited to: displaying a warning, adjusting a fraction control system of the vehicle, scheduling maintenance for the vehicle.Type: GrantFiled: August 26, 2009Date of Patent: February 19, 2013Assignee: GM Global Technology Operations LLCInventors: Hong S. Bae, Mark N. Howell
-
Patent number: 8374745Abstract: A system and method for telemetrically collecting on-road vehicle diagnostic data. In one embodiment, the method includes collecting vehicle diagnostic data from service shops, on-road vehicles and warranty records, aggregating the collected data and extracting knowledge therefrom. The extracted knowledge can be used to enhance algorithms on-board vehicles or at service centers so as to better identify vehicle faults and provide enhanced diagnostics and prognostics. The enhanced algorithms can then be used to provide predictive maintenance suggestions, provide trouble shooting assistance or provide vehicle design improvements.Type: GrantFiled: September 5, 2008Date of Patent: February 12, 2013Assignees: GM Global Technology Operations LLC, General Motors LLCInventors: Yilu Zhang, Nathan D. Ampunan, Mark J. Rychlinski, Mark N. Howell, Xiaodong Zhang, Krishnaraj Inbarajan, John J. Correia, Mutasim A. Salman, Mark E. Gilbert, Paul W. Loewer, Shirley B. Dost
-
Patent number: 8260493Abstract: A system and method for providing component and sub-system state of health prognosis in a complex system using fault models and component aging models. The method includes determining a current state of health value for a sub-system using fault signature test results and determining current state of health values for a plurality of components in the sub-system using the fault signature test results. The method also determines current state of health values for components in the system that cannot use fault signature test results using a first probability model and the current state of health values for the plurality of components. The method determines predicted future state of health values for the components in the sub-system using component aging models and determines a predicted future state of health value for the sub-system using a second probability model and the future state of health values of the components.Type: GrantFiled: February 17, 2010Date of Patent: September 4, 2012Assignee: GM Global Technology Operations LLCInventors: Yilu Zhang, Mutasim A. Salman, Kwang-Keun Shin, Satish Rajagopalan, Mark N. Howell, Xidong Tang, Hong S. Bae
-
Publication number: 20120116630Abstract: A method is provided for enhancing service diagnostics utilizing service repair data of previously serviced vehicles. Service repair data of previously serviced vehicles is obtained from a memory storage device. The service data is compiled into a service diagnostic code dataset and a service labor code dataset. The service diagnostic code dataset and service labor code dataset are categorized into an electronic data table. Respective combinations are formed in the electronic data table. An aggregate count is determined for each respective combination in the electronic data table. Either of a respective diagnostic code or a respective service labor code is identified having a correlation with more than one of either service diagnostic codes or service labor codes. At least one of a service repair procedure used to repair the vehicle or a respective service diagnostic code used to identify the fault is modified in response to analyzing the respective combinations.Type: ApplicationFiled: November 10, 2010Publication date: May 10, 2012Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.Inventors: Mark N. Howell, Mutasim A. Salman, Xidong Tang, Yilu Zhang, Soumen De, Sugato Chakrabarty, Rahul Chougule, Pulak Bandyopadhyay, Steven W. Holland