Patents by Inventor Mark Noethen

Mark Noethen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11852805
    Abstract: A wave scanning optic is formed to have an angular reflectance or refraction that produces a uniform line scan during rotation of the optic, such that the optic is operable for seamless multidirectional scanning. The wave scanning optic includes a rotatable body defining a central axis of rotation about which the rotatable body rotates during scanning, and an optical surface formed on the rotatable body and having a wavy pattern defined by one or more lobes that protrude outwardly from the rotatable body. The optical surface has a continuous pattern with an angular frequency that varies along a radial distance from the central axis of rotation. The optical surface is configured to emit and/or receive light in one or more incident directions.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: December 26, 2023
    Assignee: Raytheon Company
    Inventors: Curtis Kyhl, Mark Noethen
  • Patent number: 11604333
    Abstract: An objective lens assembly includes a first lens group configured to have a positive refractive power, the first lens group being positioned to receive visible light along an optical path extending therethrough. The objective lens assembly further includes a second lens group configured to have a negative refractive power, the second lens group being positioned along the optical path to receive the visible light from the first lens group. The objective lens assembly further includes a center lens disposed between the first lens group and the second lens group and an aperture stop centered along the optical path and positioned in front of the first lens group to direct visible light from a scene to the first lens group.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: March 14, 2023
    Assignee: RAYTHEON COMPANY
    Inventor: Mark Noethen
  • Publication number: 20220214540
    Abstract: A wave scanning optic is formed to have an angular reflectance or refraction that produces a uniform line scan during rotation of the optic, such that the optic is operable for seamless multidirectional scanning. The wave scanning optic includes a rotatable body defining a central axis of rotation about which the rotatable body rotates during scanning, and an optical surface formed on the rotatable body and having a wavy pattern defined by one or more lobes that protrude outwardly from the rotatable body. The optical surface has a continuous pattern with an angular frequency that varies along a radial distance from the central axis of rotation. The optical surface is configured to emit and/or receive light in one or more incident directions.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 7, 2022
    Inventors: Curtis Kyhl, Mark Noethen
  • Publication number: 20220066140
    Abstract: An objective lens assembly includes a first lens group configured to have a positive refractive power, the first lens group being positioned to receive visible light along an optical path extending therethrough. The objective lens assembly further includes a second lens group configured to have a negative refractive power, the second lens group being positioned along the optical path to receive the visible light from the first lens group. The objective lens assembly further includes a center lens disposed between the first lens group and the second lens group and an aperture stop centered along the optical path and positioned in front of the first lens group to direct visible light from a scene to the first lens group.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 3, 2022
    Inventor: Mark Noethen
  • Patent number: 10976528
    Abstract: Aspects and embodiments are generally directed to compact anamorphic refractive objective lens assemblies. In one example, a refractive objective lens assembly includes a passively athermal anamorphic lens group including at least a first cylindrical lens having a surface optically powered in a first dimension, the first anamorphic lens group positioned to receive thermal infrared radiation, a focus cell positioned to receive the radiation from the anamorphic lens group, the focus cell including a first group of lenses each having a rotationally symmetric surface optically powered in the first dimension and a second dimension orthogonal to the first dimension, a relay lens group positioned receive the radiation from the focus cell, the relay lens group including a second group of lenses each having a rotationally symmetric surface optically powered in both the first and second dimensions, and a dewar assembly including a cold stop and an optical detector.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 13, 2021
    Assignee: RAYTHEON COMPANY
    Inventors: Marco A. Avila, Douglas J. Hartnett, Mark Noethen
  • Publication number: 20190196159
    Abstract: Aspects and embodiments are generally directed to compact anamorphic refractive objective lens assemblies. In one example, a refractive objective lens assembly includes a passively athermal anamorphic lens group including at least a first cylindrical lens having a surface optically powered in a first dimension, the first anamorphic lens group positioned to receive thermal infrared radiation, a focus cell positioned to receive the radiation from the anamorphic lens group, the focus cell including a first group of lenses each having a rotationally symmetric surface optically powered in the first dimension and a second dimension orthogonal to the first dimension, a relay lens group positioned receive the radiation from the focus cell, the relay lens group including a second group of lenses each having a rotationally symmetric surface optically powered in both the first and second dimensions, and a dewar assembly including a cold stop and an optical detector.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 27, 2019
    Inventors: Marco A. Avila, Douglas J. Hartnett, Mark Noethen
  • Patent number: 10281694
    Abstract: Aspects and embodiments are generally directed to compact anamorphic refractive objective lens assemblies. In one example, a refractive objective lens assembly includes a passively athermal anamorphic lens group including at least a first cylindrical lens having a surface optically powered in a first dimension, the first anamorphic lens group positioned to receive thermal infrared radiation, a focus cell positioned to receive the radiation from the anamorphic lens group, the focus cell including a first group of lenses each having a rotationally symmetric surface optically powered in the first dimension and a second dimension orthogonal to the first dimension, a relay lens group positioned receive the radiation from the focus cell, the relay lens group including a second group of lenses each having a rotationally symmetric surface optically powered in both the first and second dimensions, and a dewar assembly including a cold stop and an optical detector.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: May 7, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Marco A. Avila, Mark Noethen, Douglas J. Hartnett
  • Publication number: 20180364458
    Abstract: Aspects and embodiments are generally directed to compact anamorphic refractive objective lens assemblies. In one example, a refractive objective lens assembly includes a passively athermal anamorphic lens group including at least a first cylindrical lens having a surface optically powered in a first dimension, the first anamorphic lens group positioned to receive thermal infrared radiation, a focus cell positioned to receive the radiation from the anamorphic lens group, the focus cell including a first group of lenses each having a rotationally symmetric surface optically powered in the first dimension and a second dimension orthogonal to the first dimension, a relay lens group positioned receive the radiation from the focus cell, the relay lens group including a second group of lenses each having a rotationally symmetric surface optically powered in both the first and second dimensions, and a dewar assembly including a cold stop and an optical detector.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 20, 2018
    Inventors: Marco A. Avila, Mark Noethen, Douglas J. Hartnett
  • Patent number: 10139604
    Abstract: Aspects are generally directed to a compact anamorphic objective lens assembly. In one example, the objective lens assembly includes a first anamorphic lens group including a first cylindrical lens having a surface optically powered in a first dimension and a second cylindrical lens having a surface optically powered in a second dimension orthogonal to the first dimension, the first anamorphic lens group being positioned to receive visible light along an optical path, a second anamorphic lens group positioned along the optical path to receive the visible light from the first anamorphic lens group, the second anamorphic lens group including a third cylindrical lens having a surface optically powered in the first dimension and a fourth cylindrical lens having a surface optically powered in the second dimension, and an aperture stop centered along the optical path and interposed between the first and second anamorphic lens groups.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: November 27, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Mark Noethen
  • Publication number: 20180284401
    Abstract: Aspects are generally directed to a compact anamorphic objective lens assembly. In one example, the objective lens assembly includes a first anamorphic lens group including a first cylindrical lens having a surface optically powered in a first dimension and a second cylindrical lens having a surface optically powered in a second dimension orthogonal to the first dimension, the first anamorphic lens group being positioned to receive visible light along an optical path, a second anamorphic lens group positioned along the optical path to receive the visible light from the first anamorphic lens group, the second anamorphic lens group including a third cylindrical lens having a surface optically powered in the first dimension and a fourth cylindrical lens having a surface optically powered in the second dimension, and an aperture stop centered along the optical path and interposed between the first and second anamorphic lens groups.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 4, 2018
    Inventor: Mark Noethen
  • Patent number: 9762812
    Abstract: A dual-field-of-view (FOV) optical imaging system having a primary FOV and a simultaneously viewable secondary FOV. One example of the system includes an imaging sensor, primary and secondary FOV objective optics configured to receive and output electromagnetic radiation corresponding to the primary FOV and secondary FOV, respectively, imager optics, and a field-of-view selection mechanism disposed between the secondary FOV objective optics and the imager optics and configured to selectively pass the second FOV to the imager optics, the imaging sensor being configured to produce primary FOV image frames and combined image frames that include imagery from both the primary and secondary fields-of-view.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: September 12, 2017
    Assignee: RAYTHEON COMPANY
    Inventors: Brent Belote, James Robarge, Mark Noethen
  • Publication number: 20170126986
    Abstract: A dual-field-of-view (FOV) optical imaging system having a primary FOV and a simultaneously viewable secondary FOV. One example of the system includes an imaging sensor, primary and secondary FOV objective optics configured to receive and output electromagnetic radiation corresponding to the primary FOV and secondary FOV, respectively, imager optics, and a field-of-view selection mechanism disposed between the secondary FOV objective optics and the imager optics and configured to selectively pass the second FOV to the imager optics, the imaging sensor being configured to produce primary FOV image frames and combined image frames that include imagery from both the primary and secondary fields-of-view.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: Brent Belote, James Robarge, Mark Noethen