Patents by Inventor Mark O. Freeman

Mark O. Freeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10083522
    Abstract: A Quantified Image Measurement System that creates accurate physical measurement data from digital pictures is disclosed. The system can use any image format and enhances the image file with measurement data and data transformation information that enables the creation of any type of geometrical or dimensional measurement from the stored photograph. This file containing the original digital image along with the supplemental data is referred to as a Quantified Image File or QIF. The QIF can be shared with other systems via email, cloud syncing or other types of sharing technology. Once shared, existing systems such as CAD applications or web/cloud servers can use the QIF and the associated QIF processing software routines to extract physical measurement data and use the data for subsequent processing or building geometrically accurate models of the objects or scene in the image.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: September 25, 2018
    Assignee: SMART PICTURE TECHNOLOGIES, INC.
    Inventors: Dejan Jovanovic, Keith Beardmore, Kari Myllykoski, Mark O Freeman
  • Publication number: 20160371855
    Abstract: A Quantified Image Measurement System that creates accurate physical measurement data from digital pictures is disclosed. The system can use any image format and enhances the image file with measurement data and data transformation information that enables the creation of any type of geometrical or dimensional measurement from the stored photograph. This file containing the original digital image along with the supplemental data is referred to as a Quantified Image File or QIF. The QIF can be shared with other systems via email, cloud syncing or other types of sharing technology. Once shared, existing systems such as CAD applications or web/cloud servers can use the QIF and the associated QIF processing software routines to extract physical measurement data and use the data for subsequent processing or building geometrically accurate models of the objects or scene in the image.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 22, 2016
    Inventors: Dejan Jovanovic, Keith Beardmore, Kari Myllykoski, Mark O. Freeman
  • Publication number: 20160260250
    Abstract: Method and System for 3D capture based on SFM with simplified pose detection is disclosed. This invention provides a straightforward method to directly track the camera's motion (pose detection) thereby removing a substantial portion of the computing load needed to build the 3D model from a sequence of images.
    Type: Application
    Filed: March 5, 2015
    Publication date: September 8, 2016
    Inventors: Dejan JOVANOVIC, Keith Beardmore, Kari Myllykoski, James H. Grotelueschen, Mark O. Freeman
  • Publication number: 20160134860
    Abstract: 3D Modeling System and Apparatus for mobile devices with limited processing capability is disclosed. This invention uses the standard camera and computing resources available on consumer mobile devices such as smart phones. A light projector (e.g. laser line generator) is attached as an accessory to the mobile device or built as a part of the mobile device. Processing requirements are significantly reduced by including known object(s) or reference template(s) in the scene to be captured which are used to determine the pose/position of the camera relative to the object or scene to be modeled in a series of camera pose/position sequences. The position/pose of the camera and projector for each sequence is facilitated by image distortions of known dimensions of reference template or known object in a sequence of captured images.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 12, 2016
    Inventors: Dejan Jovanovic, Keith Beardmore, Kari Myllykoski, Mark O. Freeman
  • Publication number: 20160044301
    Abstract: 3D Modeling System and Apparatus for mobile devices with limited processing capability is disclosed. This invention uses the standard camera and computing resources available on consumer mobile devices such as smart phones. A light projector (e.g. laser line generator) is attached as an accessory to the mobile device or built as a part of the mobile device. Processing requirements are significantly reduced by including a known object or reference template in the scene to be captured which is used to determine the pose and position of the camera relative to the object or scene to be modeled. The position and pose of the camera and projector is facilitated by image distortions of known dimensions of the reference template or known object in a sequence of captured images. The distortions also facilitates the proper registration between all images in the sequence.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Dejan JOVANOVICH, Keith Beardmore, Kari Myllykoski, Mark O. Freeman
  • Patent number: 9002058
    Abstract: An imaging system (100) includes a housing (101). A control circuit (224) disposed within the housing (101). A projector (102) is disposed within the housing (101) and is operable with the control circuit (224). The projector (102) is configured to create images (104) with an image cone (106). A gesture recognition device (103) is disposed within the housing (101) and is operable with the control circuit (224). The gesture recognition device (103) is configured to detect gestures (107) in a gesture recognition cone (108). The projector (102) and the gesture recognition device (103) can be arranged within the housing (101) such that the image cone (106) and the gesture recognition cone (108) exit the housing (101) without overlap.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: April 7, 2015
    Assignee: Microvision, Inc.
    Inventors: P. Selvan Viswanathan, Mark O. Freeman, Sridhar Madhavan, George Thomas Valliath, Jari Honkanen
  • Patent number: 8870381
    Abstract: An imaging system (300) configured to reduce perceived flicker in three-dimensional images is provided. The imaging system (300) can include a plurality of light sources (305,306,307), a light combiner (302), a light modulator (303) and a polarization rotator (301). The light combiner (302) combines light received from each of the light sources into a combined beam (304). A first light portion (313) in the combined beam has a first light portion polarization state that is different from a second light portion polarization state of a second light portion (314). The light modulator (303) produces images by modulating the combined beam (304) along a projection surface (316). The polarization rotator (301) selectively rotates a polarization state of the combined beam (304) in synchrony with an image refresh cycle of the imaging system. A circular polarizer (1004) can be used to transform linear polarization states to circular polarization states.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: October 28, 2014
    Assignee: Microvision, Inc.
    Inventors: Mark O. Freeman, P. Selvan Viswanathan, David Lashmet
  • Patent number: 8579443
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display, comprises a light source to generate a beam to be scanned and a scanning platform to scan the beam into an exit cone. The scanning platform receives the beam at a selected feed angle, and the scanning platform has a surface structure to redirect the exit cone at an exit angle that is less than the feed angle.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 12, 2013
    Assignee: Microvision, Inc.
    Inventors: Joshua M. Hudman, Wyatt O. Davis, Mark O. Freeman, Mark P. Helsel, David Roy Bowman, Kelly D. Linden
  • Patent number: 8576468
    Abstract: A scanning projector includes a MEMS device with a scanning mirror that sweeps a beam in two dimensions. Actuating circuits receive scan angle information and provide signal stimulus to the MEMS device to control the amount of mirror deflection on two axes. The period of movement on one or both axes may be modified to effect changes in line density in a resultant display.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: November 5, 2013
    Assignee: Microvision, Inc.
    Inventors: Mark O. Freeman, Joshua O. Miller
  • Patent number: 8567957
    Abstract: A laser-based imaging system (200) is configured to reduce perceived speckle in images (201). The imaging system (200) includes one or more laser sources (207), a light modulator (204) configured to produce the images (201) with light (205) from the laser sources (207), and one or more active polarization switches (206) disposed in an optical path of the imaging system (200). The active polarization switch (206) is configured to alternate a polarization orientation of the light in synchrony with an image refresh cycle of the system. The active polarization switch can be clocked in accordance with a clocking angle to optimize speckle reduction. Additionally, one or more light preconditioners (991,992) may be used to help optimize speckle reduction.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: October 29, 2013
    Assignee: Microvision, Inc.
    Inventors: Markus Duelli, Mark O. Freeman, Christian Dean DeJong, Alban N. Lescure
  • Publication number: 20130142383
    Abstract: An imaging system (100) includes a housing (101). A control circuit (224) disposed within the housing (101). A projector (102) is disposed within the housing (101) and is operable with the control circuit (224). The projector (102) is configured to create images (104) with an image cone (106). A gesture recognition device (103) is disposed within the housing (101) and is operable with the control circuit (224). The gesture recognition device (103) is configured to detect gestures (107) in a gesture recognition cone (108). The projector (102) and the gesture recognition device (103) can be arranged within the housing (101) such that the image cone (106) and the gesture recognition cone (108) exit the housing (101) without overlap.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Applicant: MICROVISION, INC.
    Inventors: P. Selvan Viswanathan, Mark O. Freeman, Sridhar Madhavan, George Thomas Valliath, Jari Honkanen
  • Patent number: 8446342
    Abstract: A scanned beam display device scans a beam to paint an image. The beam is scanned in two dimensions and includes at least one sinusoidal component. Phase offsets are introduced to provide different scan trajectories for successive traversals of the image field of view.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: May 21, 2013
    Assignee: Microvision, Inc.
    Inventors: Mark Champion, Margaret K. Brown, Mark O. Freeman
  • Publication number: 20130120428
    Abstract: A projection apparatus memorizes settings as a function of location, orientation, elevation, or any combination. The projection apparatus recalls the settings when the location, orientation, elevation, or combination of the projection apparatus matches memorized values. Memorized settings may include projector settings, image source settings, audio output settings, audio source settings, and the like.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Applicant: MICROVISION, INC.
    Inventors: Mark O. Freeman, George Thomas Valliath, Jari Honkanen, David Lashmet
  • Patent number: 8395714
    Abstract: An imaging system (200), such as a scanned laser projection system, includes one or more laser sources (201) configured to produce one or more light beams (204), and a light modulator (203) configured to produce images (206) from the light beams (204). Optional optical alignment devices (220) can be used to orient the light beams (204) into a combined light beam (205). A beam separator (221), which can be any of a birefringent wedge, compensated birefringent wedge, or a polymerized liquid crystal layer, is disposed between at least one of the laser sources (201) and the light modulator (203). The beam separator (221) is configured to receive light from the laser sources (201) and deliver two angularly separated and orthogonally polarized light beams (223) to the light modulator (203) so as to reduce speckle appearing when the images (206) are displayed on a display surface (207).
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: March 12, 2013
    Assignee: Microvision, Inc.
    Inventors: Alban N. Lescure, Markus Duelli, Mark O. Freeman
  • Publication number: 20130038837
    Abstract: An imaging system (300) configured to reduce perceived flicker in three-dimensional images is provided. The imaging system (300) can include a plurality of light sources (305,306,307), a light combiner (302), a light modulator (303) and a polarization rotator (301). The light combiner (302) combines light received from each of the light sources into a combined beam (304). A first light portion (313) in the combined beam has a first light portion polarization state that is different from a second light portion polarization state of a second light portion (314). The light modulator (303) produces images by modulating the combined beam (304) along a projection surface (316). The polarization rotator (301) selectively rotates a polarization state of the combined beam (304) in synchrony with an image refresh cycle of the imaging system. A circular polarizer (1004) can be used to transform linear polarization states to circular polarization states.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: MICROVISION, INC.
    Inventors: Mark O. Freeman, P. Selvan Viswanathan, David Lashmet
  • Publication number: 20130016321
    Abstract: A laser-based imaging system (200) is configured to reduce perceived speckle in images (201). The imaging system (200) includes one or more laser sources (207), a light modulator (204) configured to produce the images (201) with light (205) from the laser sources (207), and one or more active polarization switches (206) disposed in an optical path of the imaging system (200). The active polarization switch (206) is configured to alternate a polarization orientation of the light in synchrony with an image refresh cycle of the system. The active polarization switch can be clocked in accordance with a clocking angle to optimize speckle reduction. Additionally, one or more light preconditioners (991,992) may be used to help optimize speckle reduction.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: MICROVISION, INC.
    Inventors: Markus Duelli, Mark O. Freeman, Christian Dean DeJong, Alban N. Lescure
  • Patent number: 8355013
    Abstract: An integrated photonics module may include a selective fold mirror configured to pass at least a portion of emitted light toward the MEMS scanner and reflect scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 15, 2013
    Assignee: Microvision, Inc.
    Inventors: Randall B. Sprague, Joshua O. Miller, Margaret K. Brown, Mark O. Freeman, Maarten Niesten, Bin Xue, Christopher A. Wiklof
  • Patent number: 8308302
    Abstract: An imaging system (200) is configured to reduce perceived speckle (106) in images (201) by introducing angular diversity into consecutively projected images. The imaging system (200) includes one or more laser sources (203) that are configured to produce one or more light beams (215). A light modulator (204) scans these light beams (215) to produce images. A light translation element (206) introduces the angular diversity by physically altering a light reception location (208) on the light modulator (204) between refresh sweeps. To preserve image stability, image data (220) in a memory (218) can be correspondingly shifted.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: November 13, 2012
    Assignee: Microvision, Inc.
    Inventors: Alban N. Lescure, Markus Duelli, Mark O. Freeman
  • Patent number: 8287128
    Abstract: An imaging system (200), such as a scanned laser projection system, includes one or more laser sources (201) configured to produce one or more light beams (204), and a light modulator (203) configured to produce images (206) from the light beams (204). A polarization diversity element (221), which can be manufactured from a birefringent material or from a polymerized liquid crystal layer, is disposed within the imaging system (200). The polarization diversity element (221) is configured to alter the polarization of an incident beam to create a transmitted beam comprising diverse polarization patterns, thereby reducing speckle in projected images.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 16, 2012
    Assignee: Microvision, Inc.
    Inventors: Alban N. Lescure, Markus Duelli, Mark O. Freeman, Witold R. Teller
  • Patent number: 8274522
    Abstract: An image generation apparatus provides interpolation and distortion correction. The interpolation and distortion correction may be provided in one or two dimensions. Nonlinear image scan trajectories, such as sinusoidal and bi-sinusoidal trajectories are accommodated. Horizontal and vertical scan positions are determined using a linear pixel clock, and displayed pixel intensities are determined using interpolation techniques.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: September 25, 2012
    Assignee: Microvision, Inc.
    Inventors: Margaret K. Brown, Mark O. Freeman, Mark Champion, Kelly D. Linden, Aarti Raghavan, Shawn M. Swilley