Patents by Inventor Mark Oldham

Mark Oldham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9644236
    Abstract: Devices, systems and methods for sequencing protein samples are provided. In some examples, currents generated when a monomer passes through between electrodes of a nanogap electrode pair are measured for each of several different distances, so that monomers are identified when compared to a reference physical quantity of a known monomer, which may be obtained from a current measured with a similar inter-electrode distance(s) at which each of plural kinds of monomers are identifiable and ordered with predetermined accuracy and based on a detected physical quantity obtained from a tunneling current, which may be further normalized by the use of one or more reference substances.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 9, 2017
    Assignee: QUANTUM BIOSYSTEMS INC.
    Inventors: Tomoji Kawai, Masateru Taniguchi, Takahito Ohshiro, Mark Oldham, Eric Nordman
  • Publication number: 20170073750
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Application
    Filed: November 23, 2016
    Publication date: March 16, 2017
    Inventors: Hesaam Esfandyarpour, Mark Oldham
  • Patent number: 9593371
    Abstract: Devices and methods for detecting, identifying, and sequencing, compounds, complexes, and molecules are described. Electronic detection is combined with optical excitation to determine the presence or identity of an analyte of interest. Embodiments of the invention additionally provide devices and methods that allow highly parallel nucleic acid sequence determination.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: March 14, 2017
    Assignee: INTEL CORPORATION
    Inventors: Xing Su, Mark Oldham
  • Publication number: 20170050046
    Abstract: A system and method for imaging or treating a disease in a human or animal body. The system provides to the human or animal body a pharmaceutical carrier including one or more phosphors which are capable of emitting ultraviolet or visible light into the body and which provide x-ray contrast. The system includes one or more devices which infuse a diseased site with a photo-activatable drug and the pharmaceutical carrier, an initiation energy source comprising an x-ray or high energy source which irradiates the diseased site with at least one of x-rays, gamma rays, or electrons to thereby initiate emission of said ultraviolet or visible light into the body, and a processor programmed to at least one of 1) produce images of the diseased site or 2) control a dose of said x-rays, gamma rays, or electrons to the diseased site for production of said ultraviolet or visible light at the diseased site to activate the photoactivatable drug.
    Type: Application
    Filed: April 22, 2015
    Publication date: February 23, 2017
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY, NORTH CAROLINA STATE UNIVERSITY
    Inventors: Harold WALDER, Frederic A. BOURKE, Zakaryae FATHI, Wayne F. BEYER, Mark W. DEWHIRST, Mark OLDHAM, Justus ADAMSON, Michael NOLAN
  • Patent number: 9533305
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: January 3, 2017
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Mark Oldham
  • Publication number: 20160319342
    Abstract: Devices, systems and methods for sequencing protein samples are provided. In some examples, currents generated when a monomer passes through between electrodes of a nanogap electrode pair are measured for each of several different distances, so that monomers are identified when compared to a reference physical quantity of a known monomer, which may be obtained from a current measured with a similar inter-electrode distance(s) at which each of plural kinds of monomers are identifiable and ordered with predetermined accuracy and based on a detected physical quantity obtained from a tunneling current, which may be further normalized by the use of one or more reference substances.
    Type: Application
    Filed: March 4, 2016
    Publication date: November 3, 2016
    Inventors: Tomoji Kawai, Masateru Taniguchi, Takahito Ohshiro, Mark Oldham, Eric Nordman
  • Publication number: 20160320364
    Abstract: A system for detecting a biomolecule comprises a nano-gap electrode device including a first electrode and a second electrode adjacent to the first electrode. The first electrode can be separated from the second electrode by a nano-gap that is dimensioned to permit the biomolecule to flow through the nano-gap. The nano-gap can have at least a first gap region and a second gap region. The second gap region can be oriented at an angle that is greater than zero degrees with respect to a plane having the first gap region. The system can further include an electrical circuit coupled to the nano-gap electrode device. The electrical circuit can receive electrical signals from the first electrode and the second electrode upon the flow of the biomolecule through the nano-gap.
    Type: Application
    Filed: April 13, 2016
    Publication date: November 3, 2016
    Inventors: Shuji Ikeda, Mark Oldham, Eric S. Nordman
  • Publication number: 20160245790
    Abstract: The present disclosure provides methods and systems that can reduce the amount of sample necessary to detect or identify, or both detect and identify, a biomolecule, and increase the rate of denaturing of the biomolecule. A device for thermally denaturing a biomolecule may include: a substrate having low thermal conductivity; a heater disposed adjacent to the substrate; a temperature sensor disposed adjacent to the substrate; a semiconductor oxide film disposed adjacent to the substrate, a nanochannel formed in a region of the semiconductor oxide film, and a cover over the nanochannel.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 25, 2016
    Inventors: Tomoji Kawai, Masayuki Furuhashi, Masateru Kawaguchi, Mark Oldham, Eric Nordman
  • Publication number: 20160245789
    Abstract: The present disclosure provides methods for forming a nano-gap electrode. In some cases, a nano-gap having a width adjusted by a film thickness of a sidewall may be formed between a first electrode-forming part and a second electrode-forming part using sidewall which has contact with first electrode-forming part as a mask. Surfaces of the first electrode-forming part, the sidewall and the second electrode-forming part may then be exposed. The sidewall may then be removed to form a nano-gap between the first electrode-forming part and the second electrode-forming part.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 25, 2016
    Inventors: Shuji Ikeda, Mark Oldham, Eric Nordman
  • Publication number: 20160047747
    Abstract: A device including a transparent layer defining a surface exposed to a flow volume and to secure a target polynucleotide template and a detector structure secured to the transparent layer and including a plurality of detectors to detect a signal emitted during nucleotide incorporation along the target polynucleotide template.
    Type: Application
    Filed: April 2, 2014
    Publication date: February 18, 2016
    Inventors: Michael M. LAFFERTY, Jonathan M. ROTHBERG, Keith G. FIFE, Mark OLDHAM, Eric NORDMAN
  • Publication number: 20150368707
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Application
    Filed: August 25, 2015
    Publication date: December 24, 2015
    Inventors: Hesaam Esfandyarpour, Mark Oldham
  • Patent number: 9194772
    Abstract: Various embodiments of the teachings relate to a system or method for sample preparation or analysis in biochemical or molecular biology procedures. The sample preparation can involve small volume processed in discrete portions or segments or slugs, herein referred to as discrete volumes. A molecular biology procedure can be nucleic acid analysis. Nucleic acid analysis can be an integrated DNA amplification/DNA sequencing procedure.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: November 24, 2015
    Assignee: Applied Biosystems, LLC
    Inventors: Linda Lee, Sam Woo, Congcong Ma, Richard Reel, Mark Oldham, David Cox, Benjamin Schroeder, Jon Sorenson, Willy Wiyatno
  • Patent number: 9150915
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 6, 2015
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Mark Oldham
  • Publication number: 20150184237
    Abstract: Devices and methods for detecting, identifying, and sequencing, compounds, complexes, and molecules are described. Electronic detection is combined with optical excitation to determine the presence or identity of an analyte of interest. Embodiments of the invention additionally provide devices and methods that allow highly parallel nucleic acid sequence determination.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 2, 2015
    Inventors: XING SU, Mark Oldham
  • Publication number: 20150148264
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead is isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Application
    Filed: January 13, 2015
    Publication date: May 28, 2015
    Inventors: Hesaam Esfandyarpour, Mark Oldham
  • Publication number: 20150080270
    Abstract: A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
    Type: Application
    Filed: August 22, 2014
    Publication date: March 19, 2015
    Inventors: Austin B. TOMANEY, Mark OLDHAM
  • Publication number: 20150076365
    Abstract: A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
    Type: Application
    Filed: May 6, 2014
    Publication date: March 19, 2015
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: Austin TOMANEY, Mark OLDHAM
  • Patent number: 8969002
    Abstract: The present invention provides for methods and systems for Electronic DNA sequencing, single molecule DNA sequencing, and combinations of the above, providing low cost and convenient sequencing.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: March 3, 2015
    Assignee: Genapsys, Inc.
    Inventors: Hesaam Esfandyarpour, Mark Oldham
  • Publication number: 20140342948
    Abstract: Methods for multiplex amplification of target nucleic acid sequences are provided.
    Type: Application
    Filed: June 23, 2014
    Publication date: November 20, 2014
    Inventors: John BODEAU, Stephen Gunstream, Mark Oldham
  • Publication number: 20140232910
    Abstract: A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
    Type: Application
    Filed: January 21, 2014
    Publication date: August 21, 2014
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: Austin TOMANEY, Mark OLDHAM