Patents by Inventor Mark P. Lapinski

Mark P. Lapinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11479730
    Abstract: A process increases the concentration of non normal paraffins in a feed stream comprising separating a naphtha feed stream into a normal paraffin rich stream and a non-normal paraffin rich stream. The non-normal paraffin rich stream is isomerized over an isomerization catalyst to convert non-normal paraffins to normal paraffins, hydrocrack C5+ hydrocarbon to C2-C4 paraffins and produce an isomerization effluent stream. The isomerization effluent stream is separated into a C3? off gas, C4 rich stream and C5+ stream that is recycled to the naphtha feed stream. A depentanizer column may be positioned to either remove C6+ from the naphtha feed stream or from a bottoms stream from a stabilizer column. The amount of C2-C4 paraffins that are provided is increased from about 55% to as much as 77% and even more with further modifications including operating at higher temperatures or increasing the volume of catalyst.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: October 25, 2022
    Assignee: UOP LLC
    Inventors: Manoj Kumar, Mark P. Lapinski
  • Publication number: 20210277316
    Abstract: A process increases the concentration of normal paraffins in a feed stream comprising separating a naphtha feed stream into a normal paraffin rich stream and a non-normal paraffin rich stream. The non-normal paraffin rich stream is isomerized over a first isomerization catalyst to convert non-normal paraffins to normal paraffins and produce a first isomerization effluent stream. An iso-C4 stream is separated from the first isomerization effluent stream and isomerized over a second isomerization catalyst to convert iso-C4 hydrocarbons to normal C4 hydrocarbons and produce a second isomerization effluent stream. The normal paraffin rich stream, the normal paraffins in the first isomerization effluent stream and/or the second isomerization effluent stream may be fed to a steam cracker.
    Type: Application
    Filed: March 7, 2020
    Publication date: September 9, 2021
    Inventors: Gregory Funk, Cora Wang Ploentham, Marina S. Minin, Mark P. Lapinski, David J. Shecterle, Ernest J. Boehm
  • Patent number: 11066345
    Abstract: Processes for increasing an octane value of a gasoline component by dehydrogenating a stream comprising C7 hydrocarbons and methylcyclohexane in a first dehydrogenation zone to form an intermediate dehydrogenation effluent, and then dehydrogenating the intermediate dehydrogenation effluent in a second dehydrogenation zone to form a C7 dehydrogenation effluent. The C7 dehydrogenation effluent has an increased olefins content compared to an olefins content of the intermediate dehydrogenation effluent. The first dehydrogenation zone is operated under conditions to convert methylcyclohexane to toluene and minimize cracking reactions. The intermediate dehydrogenation effluent may be heated before being passed to the second dehydrogenation zone.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 20, 2021
    Assignee: UOP LLC
    Inventors: Michael W. Penninger, Mark P. Lapinski, Gregory R. Werba, David S. Lafyatis
  • Patent number: 10941352
    Abstract: Processes for producing a gasoline blend in which C7 hydrocarbons are separated from a naphtha feed. The C7 hydrocarbons are isomerized and dehydrogenated to increase the octane value of the components therein. In order to avoid conversion of methylcyclohexane to toluene in the dehydrogenation reactor, the various processes provide flow schemes in which the methylcyclohexane bypasses the C7 dehydrogenation reaction zone.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 9, 2021
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Michael W. Penninger, Rajeswar Gattupalli, Christopher D. DiGiulio, Bryan J. Egolf, Louis A. Lattanzio
  • Publication number: 20200407655
    Abstract: Processes for increasing an octane value of a gasoline component by dehydrogenating a stream comprising C7 hydrocarbons and methylcyclohexane in a first dehydrogenation zone to form an intermediate dehydrogenation effluent, and then dehydrogenating the intermediate dehydrogenation effluent in a second dehydrogenation zone to form a C7 dehydrogenation effluent. The C7 dehydrogenation effluent has an increased olefins content compared to an olefins content of the intermediate dehydrogenation effluent. The first dehydrogenation zone is operated under conditions to convert methylcyclohexane to toluene and minimize cracking reactions. The intermediate dehydrogenation effluent may be heated before being passed to the second dehydrogenation zone.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Michael W. Penninger, Mark P. Lapinski, Gregory R. Werba, David S. Lafyatis
  • Publication number: 20200407649
    Abstract: Processes for producing a gasoline blend in which C7 hydrocarbons are separated from a naphtha feed. The C7 hydrocarbons are isomerized and dehydrogenated to increase the octane value of the components therein. In order to avoid conversion of methylcyclohexane to toluene in the dehydrogenation reactor, the various processes provide flow schemes in which the methylcyclohexane bypasses the C7 dehydrogenation reaction zone.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Mark P. Lapinski, Michael W. Penninger, Rajeswar Gattupalli, Christopher D. DiGiulio, Bryan J. Egolf, Louis A. Lattanzio
  • Patent number: 10851315
    Abstract: Processes for the production of a gasoline blend. A C7 portion of a naphtha stream is first isomerized to increase the branched, iso-paraffins, and then, the isomerized effluent is passed to a dehydrogenation reaction zone. In the dehydrogenation zone, the C7 saturated hydrocarbons are convert to C7 olefins. The C7 olefins have a higher octane number than the C7 saturated hydrocarbons, and the branched olefins have a higher octane number than the normal olefins. The C7 olefins can be blended in a gasoline pool. C5 and C6 hydrocarbons can be isomerized and dehydrogenated as well, separately or with the C7 components.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: December 1, 2020
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Rajeswar Gattupalli, Bryan K. Glover, Mohamed Shakur, Keith A. Couch, Michael W. Penninger, Soumendra Mohan Banerjee, Deepak Bisht, Gautam Pandey, Amit Sharma, Priyesh Jayendrakumar Jani, Nishesh Garg
  • Patent number: 10829702
    Abstract: A process for production of gasoline comprising separating a naphtha feed in a naphtha splitter into a stream comprising i-C5, a stream comprising C6 and lighter boiling hydrocarbons, a C7 stream comprising C7 hydrocarbons, and a heavy stream comprising C8 and heavier hydrocarbons; isomerizing at least a portion of the stream comprising C6 and lighter boiling hydrocarbons in a C5-C6 isomerization zone at isomerization conditions to form a C5-C6 isomerization effluent; dehydrogenating at least a portion of the stream comprising C7 hydrocarbons to form a C7 dehydrogenation effluent comprising C7 olefins; reforming the heavy stream in a reforming zone under reforming conditions forming a reformate stream; and blending one or more of the stream comprising i-C5, the C5-C6 isomerization effluent, the C7 dehydrogenation effluent and the reformate stream to form a gasoline blend.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 10, 2020
    Assignee: UOP LLC
    Inventors: Rajeswar Gattupalli, Mohamed Shakur, Mark P. Lapinski
  • Patent number: 10301558
    Abstract: An integrated process for production of gasoline has been described. The process includes a C5-C6 isomerization zone, two C7 isomerization zones separate by a deisoheptanizer, and a reforming zone. The use of two C7 isomerization zones eliminates the need for the large recycle stream from the deisoheptanizer. The low temperature in first C7 isomerization zone favors the formation of multi-branched C7 paraffins and cyclohexanes and maximizes C5+ yield. The separation between paraffin and cycloalkane in deisoheptanizer becomes easier due to conversion of cycloalkanes to cyclohexanes in the first C7 isomerization zone. Further, the high temperature in second C7 isomerization zone favors the formation of higher octane cyclopentanes over cyclohexanes. An aromatic-containing stream can be introduced to second C7 isomerization zone. The saturation of the aromatics in the second C7 isomerization zone provides heat that increases the reactor outlet temperature in the isomerization reactors to favor cyclopentanes.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: May 28, 2019
    Assignee: UOP LLC
    Inventors: Charles P. Luebke, Lin Jin, Christopher DiGiulio, Mark P. Lapinski
  • Patent number: 9683179
    Abstract: Processes for catalytic reforming in which a cracking inhibitor, such as an olefin, or a light olefin, is used to inhibit thermal cracking of larger hydrocarbons in non-reactive zones. The cracking inhibitor may be added at various positions through the processes, such as in the recycle gas stream, before a heater, before a stream is passed into a reforming zone, after an effluent stream is recovered from a reforming zone. A molar ratio of cracking inhibitor to hydrocarbons in stream may be between 0.01 and 0.2.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: June 20, 2017
    Assignee: UOP LLC
    Inventors: Erik Holmgreen, Lin Jin, Mark P. Lapinski, Brian M. Devereux
  • Publication number: 20160369179
    Abstract: Processes for catalytic reforming in which a cracking inhibitor, such as an olefin, or a light olefin, is used to inhibit thermal cracking of larger hydrocarbons in non-reactive zones. The cracking inhibitor may be added at various positions through the processes, such as in the recycle gas stream, before a heater, before a stream is passed into a reforming zone, after an effluent stream is recovered from a reforming zone. A molar ratio of cracking inhibitor to hydrocarbons in stream may be between 0.01 and 0.2.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 22, 2016
    Inventors: Erik Holmgreen, Lin Jin, Mark P. Lapinski, Brian M. Devereux
  • Patent number: 9302960
    Abstract: A process for producing a feed for a stream cracker. At least a portion of the C6 cyclic hydrocarbons are removed from a stream prior to it being passed into an isomerization zone. Disproportionation reaction selectivity is increased, producing valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The yield may be adjusted by controlling an amount of C6 cyclic hydrocarbons passed to the isomerization zone. The catalyst in the isomerization zone is free of chloride, and the streams including effluent from the isomerization zone may be passed to a steam cracker without requiring chloride removal.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: April 5, 2016
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Matthew Lippmann
  • Patent number: 9302956
    Abstract: A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream prior to it being passed into the isomerization zone. Additionally, disproportionation reactions occur producing valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: April 5, 2016
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Matthew Lippmann, Gregory Funk, David James Shecterle, Lakshmi P. Mokka
  • Patent number: 9302957
    Abstract: A process for controlling a yield of an isomerization zone. Prior to entering the isomerization zone, C6 cyclic hydrocarbons are removed from a feed stream. Disproportionation reaction selectivity is observed which produces valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The disproportionation reactions and the ring opening reactions may be selectively controlled by adjusting an amount of C6 cyclic hydrocarbons passed into the isomerization zone.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: April 5, 2016
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Matthew Lippmann, Gregory Funk, David James Shecterle, Lakshmi P. Mokka
  • Patent number: 9302958
    Abstract: A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream prior to it being passed into the isomerization zone. Additionally, disproportionation reaction selectivity is also increased, producing valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The isomerization zone may have an average operating temperature of at least 176° C. and an outlet molar ratio of hydrogen to hydrocarbon feed in the isomerization zone is less than about 0.2.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: April 5, 2016
    Assignee: UOP LLC
    Inventor: Mark P. Lapinski
  • Patent number: 9302959
    Abstract: A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream having iC4 hydrocarbons, iC5 hydrocarbons, and iC6 hydrocarbons prior to the stream being passed into the same isomerization zone. Suppression of the iC4 hydrocarbons does not occur, allowing the iC4 hydrocarbons to be isomerized in the same isomerization zone as the iC5 hydrocarbons and iC6 hydrocarbons.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: April 5, 2016
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Matthew Lippmann, Gregory Funk
  • Patent number: 9266091
    Abstract: One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, at least two alkali metals or at least two alkaline earth metals, or mixtures of alkali metals and alkaline earth metals and a support.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 23, 2016
    Assignee: UOP LLC
    Inventors: Manuela Serban, Colleen K. Costello, Mark P. Lapinski
  • Patent number: 9199893
    Abstract: Provided is a process for producing aromatics including the steps of preparing a C8 hydrocarbon stream, feeding a naphtha stream and the C8 hydrocarbon stream to a reforming unit, and reforming the naphtha stream and the C8 hydrocarbon stream to yield aromatics. The process combines a co-feed containing C8 hydrocarbons, an alkali/alkaline earth metal-containing reforming catalyst, and a high temperature operating regime to achieve significant improvements in a reforming process for the production of xylenes and other aromatics.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: December 1, 2015
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Manuela Serban, Steven L. Krupa, Mark D. Moser, Kurt M. Vanden Bussche
  • Publication number: 20150315100
    Abstract: A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream prior to it being passed into the isomerization zone. Additionally, disproportionation reaction selectivity is also increased, producing valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The isomerization zone may have an average operating temperature of at least 176° C. and an outlet molar ratio of hydrogen to hydrocarbon feed in the isomerization zone is less than about 0.2.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: UOP LLC
    Inventor: Mark P. Lapinski
  • Publication number: 20150315099
    Abstract: A process for controlling a yield of an isomerization zone. Prior to entering the isomerization zone, C6 cyclic hydrocarbons are removed from a feed stream. Disproportionation reaction selectivity is observed which produces valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The disproportionation reactions and the ring opening reactions may be selectively controlled by adjusting an amount of C6 cyclic hydrocarbons passed into the isomerization zone.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: UOP LLC
    Inventors: Mark P. Lapinski, Matthew Lippmann, Gregory Funk, David James Shecterle, Lakshmi P. Mokka