Patents by Inventor Mark P. Mack

Mark P. Mack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8207277
    Abstract: A method of modifying a tubular low density polyethylene (LDPE) is disclosed. In the method ethylene is polymerized with a free radical initiator in a high pressure reactor to form an LDPE. The LDPE is then reacted with a free radical initiator to produce a modified polyethylene. The modified polymer has an increased long chain branching index as indicated by the increase in the gel permeation chromatography branching index.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: June 26, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Debra L. Beran, Mark P. Mack, Anil W. Saraf
  • Patent number: 8034461
    Abstract: A method for making multilayer thin films is disclosed. The method of comprises orienting a thick multilayer film in the machine direction at a drawdown ratio effective to produce a multilayer thin film. The thick multilayer film has a thickness within the range of 1 mil to 5 mils and comprises at least one layer of a linear low density polyethylene (LLDPE) and at least one layer of a high density polyethylene (HDPE) or a medium density polyethylene (MDPE).
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: October 11, 2011
    Assignee: Equistar Chemicals, LP
    Inventors: D. Ryan Breese, Kelly L. Williams, Charles S. Holland, Mark P. Mack
  • Patent number: 7855255
    Abstract: Disclosed is a polyethylene composition. The composition comprises single-site multimodal resin A and single-site multimodal resin B, wherein resin A differs from resin B in molecular weight, in monomeric composition, in density, in long chain branch concentration or distribution, or in combinations thereof. Disclosed is also a method for making the polyethylene composition. The method comprises polymerizing, in the presence of two or more single-site catalysts, ethylene or its mixture with a C3-C10 ?-olefin to form a first multimodal resin and continuing the polymerization in the presence of the same catalysts but in a different hydrogen concentration, in a different monomer composition, or at a different temperature to form a second multimodal resin.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: December 21, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Venki Chandrashekar, Mark P. Mack, Charles H. Gates, Jr., Charles S. Holland, Natalia Nagy, Sandor M. Nagy, Edward S. Vargas, Jean A. Merrick-Mack
  • Patent number: 7723451
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin, hydrogen, and a catalyst comprising an activator and a supported, dimethylsilyl-bridged bis(indenoindolyl)zirconium complex. The process has high catalyst activity and produces polyethylene having a broad molecular weight distribution.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: May 25, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Bradley P. Etherton, Jean A. Merrick-Mack, Everett O. Lewis, Mark P. Mack, Natalia Nagy, Edward S. Vargas
  • Publication number: 20100076160
    Abstract: A method of modifying a tubular low density polyethylene (LDPE) is disclosed. In the method ethylene is polymerized with a free radical initiator in a high pressure reactor to form an LDPE. The LDPE is then reacted with a free radical initiator to produce a modified polyethylene. The modified polymer has an increased long chain branching index as indicated by the increase in the gel permeation chromatography branching index.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Inventors: Debra L. Beran, Mark P. Mack, Anil W. Saraf
  • Publication number: 20090099316
    Abstract: Disclosed is a polyethylene composition. The composition comprises single-site multimodal resin A and single-site multimodal resin B, wherein resin A differs from resin B in molecular weight, in monomeric composition, in density, in long chain branch concentration or distribution, or in combinations thereof. Disclosed is also a method for making the polyethylene composition. The method comprises polymerizing, in the presence of two or more single-site catalysts, ethylene or its mixture with a C3-C10 ?-olefin to form a first multimodal resin and continuing the polymerization in the presence of the same catalysts but in a different hydrogen concentration, in a different monomer composition, or at a different temperature to form a second multimodal resin.
    Type: Application
    Filed: December 4, 2008
    Publication date: April 16, 2009
    Inventors: Venki Chandrashekar, Mark P. Mack, Charles H. Gates, JR., Charles S. Holland, Natalia Nagy, Sandor M. Nagy, Edward S. Vargas, Jean A. Merrick-Mack
  • Publication number: 20090062490
    Abstract: A slurry process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of an ?-olefin, hydrogen, and a catalyst comprising an activator and a supported, dimethylsilyl-bridged bis(indenoindolyl)zirconium complex. The process has high catalyst activity and produces polyethylene having a broad molecular weight distribution.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 5, 2009
    Inventors: Sandor Nagy, Barbara M. Tsuie, Bradley P. Etherton, Jean A. Merrick-Mack, Everett O. Lewis, Mark P. Mack, Natalia Nagy, Edward S. Vargas
  • Patent number: 7473745
    Abstract: Disclosed is a polyethylene composition. The composition comprises single-site multimodal resin A and single-site multimodal resin B, wherein resin A differs from resin B in molecular weight, in monomeric composition, in density, in long chain branch concentration or distribution, or in combinations thereof. Disclosed is also a method for making the polyethylene composition. The method comprises polymerizing, in the presence of two or more single-site catalysts, ethylene or its mixture with a C3-C10 ?-olefin to form a first multimodal resin and continuing the polymerization in the presence of the same catalysts but in a different hydrogen concentration, in a different monomer composition, or at a different temperature to form a second multimodal resin.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: January 6, 2009
    Assignee: Equistar Chemicals, LP
    Inventors: Venki Chandrashekar, Mark P. Mack, Charles H. Gates, Jr., Charles S. Holland, Natalia Nagy, Sandor M. Nagy, Edward S. Vargas, Jean A. Merrick-Mack
  • Patent number: 7423098
    Abstract: An ethylene polymerization process is disclosed. Ethylene is polymerized in two slurry reaction zones with a C6-C10 alpha-olefin in the presence of a single-site catalyst capable of making a high molecular weight polyolefin. The process yields medium density and linear low density polyethylene having a bimodal molecular weight distribution and a melt index from about 0.10 to about 0.80. Films from the polyethylene have superior impact properties.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: September 9, 2008
    Assignee: Equistar Chemicals, LP
    Inventors: Philip J. Garrison, Charles S. Holland, Mark P. Mack, Linda N. Winslow, Everett O. Lewis, James R. Clark, Leonard V. Cribbs, Bradley P. Etherton, Jean A. Merrick-Mack, Paula L. Nygard
  • Patent number: 7273914
    Abstract: Methods for making polyolefins are disclosed. One method comprises polymerizing an olefin in the presence of a catalyst system comprising a single-site complex, an agglomerated metal oxide/clay support-activator, and an ionic borate. Including an ionic borate with the support-activator provides an unexpected boost in catalyst activity and gives polyolefins with high molecular weight and improved comonomer incorporation. In another method of the invention, an olefin is polymerized in the presence of an indenoindolyl metal alkylated complex and an agglomerated metal oxide/clay support-activator. Use of alkylated indenoindolyl complexes with the support-activators provides improved activity compared with metal halides.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: September 25, 2007
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Barbara M. Tsuie, Mark P. Mack, Edward S. Vargas, Debra L. Beran
  • Patent number: 7230054
    Abstract: Resins comprising a relatively high-density, low-molecular-weight polyethylene component and a relatively low-density, high-molecular-weight ethylene copolymer component and methods of making the resins are disclosed. The rheological polydispersity of the high-density component exceeds that of either the resin or the low-density component. The resins are valuable for making films, sheets, coatings, pipes, fibers, and molded articles having a favorable balance of good stiffness and excellent environmental stress crack resistance.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 12, 2007
    Assignee: Equistar Chemicals, LP
    Inventors: Harilaos Mavridis, Sameer D. Mehta, Mark P. Mack, Philip J. Garrison, Michael W. Lynch
  • Patent number: 7144964
    Abstract: A high-temperature solution process for polymerizing ethylene is disclosed. The polymerization is performed in the presence of a preassembled bimetallic Ziegler-Natta catalyst and an aluminum compound. Molecular modeling calculations predict that the bimetallic Ziegler-Natta catalyst will have good activity and improved stability versus traditional Ziegler-Natta catalysts. This makes the catalyst especially suitable for solution polymerization processes, which require a thermally robust catalyst.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: December 5, 2006
    Assignee: Equistar Chemicals, L.P.
    Inventors: Sandor Nagy, Mark P. Mack
  • Patent number: 7094723
    Abstract: The present invention provides a non-metallocene catalyst comprising a complex having one or more ligands coordinated a transition metal. The catalyst contains substituents bonded to the transition metal through a heteroatom such as oxygen or sulfur. Furthermore, the complex includes a Group 3 to 10 transition or lanthanide metal and one or more anionic or neutral ligands in an amount that satisfies the valency of the metal such that the complex has a net zero charge. The present invention also discloses a method for preparing the catalyst and polymerizing olefins utilizing the catalyst of the present invention.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: August 22, 2006
    Assignee: Equistar Chemicals LP
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack
  • Patent number: 7030188
    Abstract: Improved multi-phase polypropylene composites are provided. The compositions are comprised of a polypropylene base resin, a non-compatible dispersed phase which can be a polymer or filler material and a propylene-ethylene copolymer grafted with a carboxylic acid or carboxylic acid derivative.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: April 18, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Maged G. Botros, Mark P. Mack, James H. Meas, Clifford C. Lee
  • Patent number: 7005489
    Abstract: A new class of zwitterionic metallocycles is disclosed. A positively charged Group 4-10 transition metal is chelated to two heteroatoms and one of the heteroatoms has a substituent bearing a negative charge. We have found that substitution in this position stabilizes the zwitterion form of the metallocycle. The zwitterionic metallocycle is useful for olefin polymerizations.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: February 28, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Mark P. Mack
  • Patent number: 6908972
    Abstract: A method for making ethylene polymers and copolymers is disclosed. The method uses a catalyst system comprising a low level of an aluminum-containing activator, a bridged indenoindolyl transition metal complex, and a treated silica support. The method enables economical preparation of ethylene copolymers having very low density. The silica-supported, bridged complexes incorporate comonomers efficiently and are valuable for a commercial slurry loop process. Use of a bridged indeno[2,1-b]indolyl complex provides exceptionally efficient comonomer incorporation, and gives polymers with a substantial and controlled level of long-chain branching. The method facilitates the production of a wide variety of polyolefins, from HDPE to plastomers.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: June 21, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Barbara M. Tsuie, Karen L. Neal-Hawkins, Sandor Nagy, Michael W. Lynch, Mark P. Mack, Shaotian Wang, Jean A Merrick-Mack, Clifford C. Lee, Joel A. Mutchler, Kenneth W. Johnson
  • Patent number: 6844402
    Abstract: A process for making olefin-acrylic copolymers is disclosed. The process comprises polymerizing an olefin and an acrylic monomer in the presence of an activator and a Group 8-10 late transition metal complex. The late transition metal catalyst contains an isoindoline ligand.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: January 18, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Jia-Chu Liu, Mark P. Mack, Shao-Hua Guo
  • Patent number: 6838410
    Abstract: A process for making ethylene copolymers is disclosed. Ethylene copolymerizes with an ?-olefin in the presence of a catalyst system comprising an activator and a silica-supported, bridged indenoindolyl metal complex having “open architecture.” The supported complex incorporates comonomers with exceptional efficiency, and the process gives ethylene copolymers having high molecular weights (Mw>100K) and very low densities (<0.910 g/cm3). Open architecture catalysts that include bridging through the indolyl nitrogen of the indenoindolyl framework are also described. Additionally, supported and unsupported indeno[1,2-b]indolyl catalysts provide exceptional activities in the preparation of elastomeric polypropylene and ethylene copolymers.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: January 4, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack, Gregory G. Hlatky, Sandor Nagy, Barbara M. Tsuie, Craig C. Meverden
  • Publication number: 20040023791
    Abstract: A process for making ethylene copolymers is disclosed. Ethylene copolymerizes with an &agr;-olefin in the presence of a catalyst system comprising an activator and a silica-supported, bridged indenoindolyl metal complex having “open architecture.” The supported complex incorporates comonomers with exceptional efficiency, and the process gives ethylene copolymers having high molecular weights (Mw>100K) and very low densities (<0.910 g/cm3). Open architecture catalysts that include bridging through the indolyl nitrogen of the indenoindolyl framework are also described. Additionally, supported and unsupported indeno[1,2-b]indolyl catalysts provide exceptional activities in the preparation of elastomeric polypropylene and ethylene copolymers.
    Type: Application
    Filed: March 5, 2003
    Publication date: February 5, 2004
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack, Gregory G. Hlatky, Sandor Nagy, Barbara M. Tsuie, Craig C. Meverden
  • Publication number: 20030203807
    Abstract: The present invention provides a non-metallocene catalyst comprising a complex having one or more ligands coordinated a transition metal. The catalyst contains substituents bonded to the transition metal through a heteroatom such as oxygen or sulfur. Furthermore, the complex includes a Group 3 to 10 transition or lanthanide metal and one or more anionic or neutral ligands in an amount that satisfies the valency of the metal such that the complex has a net zero charge. The present invention also discloses a method for preparing the catalyst and polymerizing olefins utilizing the catalyst of the present invention.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 30, 2003
    Applicant: Equistar Chemicals L.P.
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack