Patents by Inventor Mark P. White

Mark P. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250027931
    Abstract: Methods are described herein for screening an antibody producing cell within a microfluidic environment. The antibody producing cell may be a B cell lymphocyte, which may be a memory B cell or a plasma cell. An antigen of interest may be brought into proximity with the antibody producing cell and binding of the antigen by an antibody produced by the antibody producing cell may be monitored. Methods of obtaining a sequencing library from an antibody producing cell are also described.
    Type: Application
    Filed: February 23, 2024
    Publication date: January 23, 2025
    Applicant: Bruker Cellular Analysis, Inc.
    Inventors: Minha Park, Jason C. Briggs, Jason M. McEwen, Ravi K. Ramenani, Hariharasudhan Chirra Dinakar, Kai W. Szeto, Adrienne T. Higa, Mark P. White, Randall D. Lowe, Jr., Xiaohua Wang, Kevin T. Chapman
  • Patent number: 12162006
    Abstract: Some configurations of a microfluidic apparatus can comprise a fluidic circuit of interconnected fluidic structures into which a plurality of different media can be introduced or extracted. A variety of operations can be performed with the different media including isolating with a second medium one or more of the fluidic structures that is filled partially or fully with a first medium. Discrete volumes of a medium can be moved through the isolating second medium to deliver materials or micro-objects to or remove micro-objects or materials from a fluidic structure that is otherwise isolated by the second medium. Some configurations of a microfluidic apparatus can isolate microfluidic structures in a microfluidic apparatus using flow rates or blocking structures, and some configurations can manage bubbles in fluidic structures.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: December 10, 2024
    Assignee: BRUKER CELLULAR ANALYSIS, INC.
    Inventors: Keith Joseph Breinlinger, Eric D. Hobbs, Dorian Liepmann, Joshua Tanner Nevill, Mark P. White, Maria Jimena Loureiro
  • Publication number: 20240375097
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.
    Type: Application
    Filed: September 13, 2023
    Publication date: November 14, 2024
    Inventors: Randall D. LOWE, JR., Alexander J. MASTROIANNI, Mark P. WHITE, Gregory G. LAVIEU, Kristin G. BEAUMONT
  • Patent number: 12134758
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: November 5, 2024
    Assignee: BRUKER CELLULAR ANALYSIS, INC.
    Inventors: Randall D. Lowe, Jr., Kristin G. Beaumont, Aathavan Karunakaran, Natalie C. Marks, Jason M. McEwen, Mark P. White, J. Tanner Nevill, Gang F. Wang, Andrew W. McFarland, Daniele Malleo, Keith J. Breinlinger, Xiao Guan, Kevin T. Chapman
  • Patent number: 12102083
    Abstract: A method of processing and storing biological cells includes introducing a flowable medium into a microfluidic device, the flowable medium including biological cells; sequestering one or more biological cells from the flowable medium in one or more isolation regions of the microfluidic device; and freezing the microfluidic device including the one or more biological cells sequestered therein.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: October 1, 2024
    Assignee: BRUKER CELLULAR ANALYSIS, INC.
    Inventors: Mark P. White, Kevin T. Chapman, Andrew W. McFarland, Eric D. Hobbs, Randall D. Lowe, Jr.
  • Patent number: 11998914
    Abstract: Biological activity in holding pens in a micro-fluidic device can be assayed by placing in the holding pens capture objects that bind a particular material of interest produced by the biological activity. The biological material of interest that binds to each capture object can then be assessed, either in the micro-fluidic device or after exporting the capture object from the micro-fluidic device. The assessment can be utilized to characterize the biological activity in each holding pen. The biological activity can be production of the biological material of interest. Thus, the biological activity can correspond to or arise from one or more biological cells. Biological cells within a holding pen can be clonal cell colonies. The biological activity of each clonal cell colony can be assayed while maintaining the clonal status of each colony.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: June 4, 2024
    Assignee: BRUKER CELLULAR ANALYSIS, INC.
    Inventors: Kevin T. Chapman, Daniele Malleo, J. Tanner Nevill, Steven W. Short, Mark P. White, M. Jimena Loureiro
  • Patent number: 11971409
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 30, 2024
    Assignee: Bruker Cellular Analysis, Inc.
    Inventors: Kevin T. Chapman, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, Jr., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang, George L. Fox, Peggy A. Radel
  • Publication number: 20230347347
    Abstract: A microfluidic device can comprise at least one swept region that is fluidically connected to unswept regions. The fluidic connections between the swept region and the unswept regions can enable diffusion but substantially no flow of media between the swept region and the unswept regions. The capability of biological micro-objects to produce an analyte of interest can be assayed in such a microfluidic device. Biological micro-objects in sample material loaded into a microfluidic device can be selected for particular characteristics and disposed into unswept regions. The sample material can then be flowed out of the swept region and an assay material flowed into the swept region. Flows of medium in the swept region do not substantially affect the biological micro-objects in the unswept regions, but any analyte of interest produced by a biological micro-object can diffuse from an unswept region into the swept region, where the analyte can react with the assay material to produce a localized detectable reaction.
    Type: Application
    Filed: December 19, 2022
    Publication date: November 2, 2023
    Inventors: Mark P. White, Eric D. Hobbs, J. Tanner Nevill, Daniele Malleo, Steven W. Short
  • Patent number: 11801508
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: October 31, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Randall D. Lowe, Jr., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
  • Patent number: 11565259
    Abstract: A microfluidic device can comprise at least one swept region that is fluidically connected to unswept regions. The fluidic connections between the swept region and the unswept regions can enable diffusion but substantially no flow of media between the swept region and the unswept regions. The capability of biological micro-objects to produce an analyte of interest can be assayed in such a microfluidic device. Biological micro-objects in sample material loaded into a microfluidic device can be selected for particular characteristics and disposed into unswept regions. The sample material can then be flowed out of the swept region and an assay material flowed into the swept region. Flows of medium in the swept region do not substantially affect the biological micro-objects in the unswept regions, but any analyte of interest produced by a biological micro-object can diffuse from an unswept region into the swept region, where the analyte can react with the assay material to produce a localized detectable reaction.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: January 31, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Mark P. White, Eric D. Hobbs, J. Tanner Nevill, Daniele Malleo, Steven W. Short
  • Publication number: 20220388003
    Abstract: Biological activity in holding pens in a micro-fluidic device can be assayed by placing in the holding pens capture objects that bind a particular material of interest produced by the biological activity. The biological material of interest that binds to each capture object can then be assessed, either in the micro-fluidic device or after exporting the capture object from the micro-fluidic device. The assessment can be utilized to characterize the biological activity in each holding pen. The biological activity can be production of the biological material of interest. Thus, the biological activity can correspond to or arise from one or more biological cells. Biological cells within a holding pen can be clonal cell colonies. The biological activity of each clonal cell colony can be assayed while maintaining the clonal status of each colony.
    Type: Application
    Filed: March 24, 2022
    Publication date: December 8, 2022
    Inventors: Kevin T. Chapman, Daniele Malleo, J. Tanner Nevill, Steven W. Short, Mark P. White, M. Jimena Loureiro
  • Publication number: 20220379320
    Abstract: Individual biological cells can be selected in a micro-fluidic device and moved into isolation pens in the device. The cells can then be lysed in the pens, releasing nucleic acid material, which can be captured by one or more capture objects in the pens. The capture objects with the captured nucleic acid material can then be removed from the pens. The capture objects can include unique identifiers, allowing each capture object to be correlated to the individual cell from which the nucleic acid material captured by the object originated.
    Type: Application
    Filed: March 15, 2022
    Publication date: December 1, 2022
    Inventors: Kevin T. Chapman, Eric D. Hobbs, Steven W. Short, Mark P. White, Daniele Malleo
  • Publication number: 20220356429
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 10, 2022
    Inventors: Randall D. LOWE, JR., Kristin G. BEAUMONT, Aathavan KARUNAKARAN, Natalie C. MARKS, Jason M. MCEWEN, Mark P. WHITE, J. Tanner NEVILL, Gang F. WANG, Andrew W. MCFARLAND, Daniele Malleo, Keith J. BREINLINGER, Xiao GUAN, Kevin T. CHAPMAN
  • Patent number: 11365381
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: June 21, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Randall D. Lowe, Jr., Kristin G. Beaumont, Aathavan Karunakaran, Natalie C. Marks, Jason M. McEwen, Mark P. White, J. Tanner Nevill, Gang F. Wang, Andrew W. McFarland, Daniele Malleo, Keith J. Breinlinger, Xiao Guan, Kevin T. Chapman
  • Publication number: 20220143612
    Abstract: A microfluidic apparatus is provided having one or more sequestration pens configured to isolate one or more target micro-objects by changing the orientation of the microfluidic apparatus with respect to a globally active force, such as gravity. Methods of selectively directing the movements of micro-objects in such a microfluidic apparatus using gravitational forces are also provided. The micro-objects can be biological micro-objects, such as cells, or inanimate micro-objects, such as beads.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 12, 2022
    Inventors: Keith J. Breinlinger, Eric D. Hobbs, Daniele Malleo, J. Tanner Nevill, Mark P. White
  • Patent number: 11318479
    Abstract: Individual biological cells can be selected in a micro-fluidic device and moved into isolation pens in the device. The cells can then be lysed in the pens, releasing nucleic acid material, which can be captured by one or more capture objects in the pens. The capture objects with the captured nucleic acid material can then be removed from the pens. The capture objects can include unique identifiers, allowing each capture object to be correlated to the individual cell from which the nucleic acid material captured by the object originated.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: May 3, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, Eric D. Hobbs, Steven W. Short, Mark P. White, Daniele Malleo
  • Patent number: 11305283
    Abstract: Biological activity in holding pens in a micro-fluidic device can be assayed by placing in the holding pens capture objects that bind a particular material of interest produced by the biological activity. The biological material of interest that binds to each capture object can then be assessed, either in the micro-fluidic device or after exporting the capture object from the micro-fluidic device. The assessment can be utilized to characterize the biological activity in each holding pen. The biological activity can be production of the biological material of interest. Thus, the biological activity can correspond to or arise from one or more biological cells. Biological cells within a holding pen can be clonal cell colonies. The biological activity of each clonal cell colony can be assayed while maintaining the clonal status of each colony.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: April 19, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, Daniele Malleo, J. Tanner Nevill, Steven W. Short, Mark P. White, M. Jimena Loureiro
  • Publication number: 20210368781
    Abstract: A method of processing and storing biological cells includes introducing a flowable medium into a microfluidic device, the flowable medium including biological cells; sequestering one or more biological cells from the flowable medium in one or more isolation regions of the microfluidic device; and freezing the microfluidic device including the one or more biological cells sequestered therein.
    Type: Application
    Filed: April 12, 2021
    Publication date: December 2, 2021
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Mark P. White, Kevin T. Chapman, Andrew W. McFarland, Eric D. Hobbs, Randall D. Lowe, JR.
  • Publication number: 20210291171
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.
    Type: Application
    Filed: January 29, 2021
    Publication date: September 23, 2021
    Applicant: Berkeley Lights, Inc.
    Inventors: Randall D. Lowe, JR., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
  • Patent number: 11007520
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 18, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Randall D. Lowe, Jr., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont