Patents by Inventor Mark Piniarski

Mark Piniarski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11307172
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: April 19, 2022
    Assignee: Smiths Detection Montreal, Inc.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Patent number: 10338027
    Abstract: Systems and methods disclosed provide for methods of managing polarity switching in an ion mobility spectrometer, and provide for management of the repelling grid voltage, the gating grid voltage, and the fixed grid voltage during polarity switching. Systems and methods also provide for the management of the effect of dielectric relaxation in an insulator proximal to the collector, and provide for a preamplifier coupled to the collector including a switch, and a method of managing the collector output including the switch. Systems and methods consistent with the current disclosure further provide for a method of normalizing ion mobility data by determining fitting coefficients associated with a plurality of measurement data sets, and subtracting the curves determined by the fitting coefficients from the data acquired by the ion mobility spectrometer.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: July 2, 2019
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Henryk Zaleski, Mark Piniarski, Simon Feldberg, Jeff Anderson, Oleg Samarin
  • Publication number: 20190128844
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 2, 2019
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Patent number: 10139366
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 27, 2018
    Assignee: SMITHS DETECTION MONTREAL INC.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Publication number: 20170299551
    Abstract: Systems and methods disclosed provide for methods of managing polarity switching in an ion mobility spectrometer, and provide for management of the repelling grid voltage, the gating grid voltage, and the fixed grid voltage during polarity switching. Systems and methods also provide for the management of the effect of dielectric relaxation in an insulator proximal to the collector, and provide for a preamplifier coupled to the collector including a switch, and a method of managing the collector output including the switch. Systems and methods consistent with the current disclosure further provide for a method of normalizing ion mobility data by determining fitting coefficients associated with a plurality of measurement data sets, and subtracting the curves determined by the fitting coefficients from the data acquired by the ion mobility spectrometer.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Henryk Zaleski, Mark Piniarski, Simon Feldberg, Jeff Anderson, Oleg Samarin
  • Patent number: 9778224
    Abstract: An ionization device includes a first electrode comprising a conductive member coated with a dielectric layer. The ionization device also includes a spine extending adjacent to and at least partially along the first electrode. The ionization device further includes a second electrode comprising conductive segments disposed adjacent the first electrode. Each one of the conductive segments contacts the spine at a respective contact location. The dielectric layer of the first electrode separates the conductive member of the first electrode from the spine and the second electrode. The ionization device is configured to create plasma generating locations corresponding to respective crossings of the first electrode and the second electrode.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: October 3, 2017
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Igor Kubelik, Simon Feldberg, Bohdan Atamanchuk, Mark Piniarski, Mark Lekhter, Daniel Levin, Vlad Sergeyev, Henryk Zaleski
  • Patent number: 9709530
    Abstract: Systems and methods disclosed provide for methods of managing polarity switching in an ion mobility spectrometer, and provide for management of the repelling grid voltage, the gating grid voltage, and the fixed grid voltage during polarity switching. Systems and methods also provide for the management of the effect of dielectric relaxation in an insulator proximal to the collector, and provide for a preamplifier coupled to the collector including a switch, and a method of managing the collector output including the switch. Systems and methods consistent with the current disclosure further provide for a method of normalizing ion mobility data by determining fitting coefficients associated with a plurality of measurement data sets, and subtracting the curves determined by the fitting coefficients from the data acquired by the ion mobility spectrometer.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: July 18, 2017
    Assignee: SMITHS DETECTION MONTREAL INC.
    Inventors: Henryk Zaleski, Mark Piniarski, Simon Feldberg, Jeff Anderson, Oleg Samarin
  • Publication number: 20170023525
    Abstract: An ionization device includes a first electrode comprising a conductive member coated with a dielectric layer. The ionization device also includes a spine extending adjacent to and at least partially along the first electrode. The ionization device further includes a second electrode comprising conductive segments disposed adjacent the first electrode. Each one of the conductive segments contacts the spine at a respective contact location. The dielectric layer of the first electrode separates the conductive member of the first electrode from the spine and the second electrode. The ionization device is configured to create plasma generating locations corresponding to respective crossings of the first electrode and the second electrode.
    Type: Application
    Filed: November 26, 2014
    Publication date: January 26, 2017
    Inventors: Igor Kubelik, Simon Feldberg, Bohdan Atamanchuk, Mark Piniarski, Mark Lekhter, Daniel Levin, Vlad Sergeyev, Henryk Zaleski
  • Publication number: 20160231276
    Abstract: Systems and methods disclosed provide for methods of managing polarity switching in an ion mobility spectrometer, and provide for management of the repelling grid voltage, the gating grid voltage, and the fixed grid voltage during polarity switching. Systems and methods also provide for the management of the effect of dielectric relaxation in an insulator proximal to the collector, and provide for a preamplifier coupled to the collector including a switch, and a method of managing the collector output including the switch. Systems and methods consistent with the current disclosure further provide for a method of normalizing ion mobility data by determining fitting coefficients associated with a plurality of measurement data sets, and subtracting the curves determined by the fitting coefficients from the data acquired by the ion mobility spectrometer.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 11, 2016
    Inventors: Henryk Zaleski, Mark Piniarski, Simon Feldberg, Jeff Anderson, Oleg Samarin
  • Patent number: 9287102
    Abstract: Systems and methods disclosed provide for methods of managing polarity switching in an ion mobility spectrometer, and provide for management of the repelling grid voltage, the gating grid voltage, and the fixed grid voltage during polarity switching. Systems and methods also provide for the management of the effect of dielectric relaxation in an insulator proximal to the collector, and provide for a preamplifier coupled to the collector including a switch, and a method of managing the collector output including the switch. Systems and methods consistent with the current disclosure further provide for a method of normalizing ion mobility data by determining fitting coefficients associated with a plurality of measurement data sets, and subtracting the curves determined by the fitting coefficients from the data acquired by the ion mobility spectrometer.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 15, 2016
    Assignee: SMITHS DETECTION MONTREAL INC.
    Inventors: Henryk Zaleski, Mark Piniarski, Simon Feldberg, Jeff Anderson, Oleg Samarin
  • Patent number: 8901489
    Abstract: Looped ionization sources for ion mobility spectrometers are described. The ionization sources can be used to ionize molecules from a sample of interest in order to identify the molecules based on the ions. In an implementation, an electrical ionization source includes a wire that is looped between electrical contacts. The wire is used to form a corona responsive to application of voltage between the wire and the walls of an ionization chamber. The corona can form when a sufficient voltage is applied between the wire and the walls. A difference in electrical potential between the wire and a wall forming an ionization chamber, in which wire is contained, can be used to draw the ions away from the wire. In embodiments, the wire can be heated to reduce the voltage used to strike the corona. The ions, subsequently, may ionize the molecules from the sample of interest. The looped corona source can also be used in mass spectrometers (MS).
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: December 2, 2014
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Daniel Levin, Vlad Sergeyev, Volodimir Bondarenko, Bohdan Atamanchuk, Qunzhou Bian, Henryk Zaleski, Mark Piniarski, Simon Feldberg, Ronald Jackson
  • Publication number: 20140264021
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Applicant: Smiths Detection Montreal Inc.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Publication number: 20140246581
    Abstract: Looped ionization sources for ion mobility spectrometers are described. The ionization sources can be used to ionize molecules from a sample of interest in order to identify the molecules based on the ions. In an implementation, an electrical ionization source includes a wire that is looped between electrical contacts. The wire is used to form a corona responsive to application of voltage between the wire and the walls of an ionization chamber. The corona can form when a sufficient voltage is applied between the wire and the walls. A difference in electrical potential between the wire and a wall forming an ionization chamber, in which wire is contained, can be used to draw the ions away from the wire. In embodiments, the wire can be heated to reduce the voltage used to strike the corona. The ions, subsequently, may ionize the molecules from the sample of interest. The looped corona source can also be used in mass spectrometers (MS).
    Type: Application
    Filed: June 15, 2012
    Publication date: September 4, 2014
    Applicant: SMITHS DETECTION MONTREAL INC.
    Inventors: Daniel Levin, Vlad Sergeyev, Volodimir Bondarenko, Bohdan Atamanchuk, Qunzhou Bian, Henryk Zaleski, Mark Piniarski, Simon Feldberg, Ronald Jackson
  • Publication number: 20130284914
    Abstract: Systems and methods disclosed provide for methods of managing polarity switching in an ion mobility spectrometer, and provide for management of the repelling grid voltage, the gating grid voltage, and the fixed grid voltage during polarity switching. Systems and methods also provide for the management of the effect of dielectric relaxation in an insulator proximal to the collector, and provide for a preamplifier coupled to the collector including a switch, and a method of managing the collector output including the switch. Systems and methods consistent with the current disclosure further provide for a method of normalizing ion mobility data by determining fitting coefficients associated with a plurality of measurement data sets, and subtracting the curves determined by the fitting coefficients from the data acquired by the ion mobility spectrometer.
    Type: Application
    Filed: October 27, 2011
    Publication date: October 31, 2013
    Applicant: SMITHS DETECTION MONTREAL
    Inventors: Henryk Zaleski, Mark Piniarski, Simon Feldberg, Jeff Anderson, Oleg Samarin
  • Patent number: 7800056
    Abstract: A document sampler can be arranged to receive a document in an insertion area of the document sampler. With such arrangements, a document can be directly inserted into a document sampler without an extra step of swabbing a document with a sample collection device. By eliminating the extra step of swabbing a document, the efficiency of sample detection is improved, sample detection is performed more rapidly, and operating costs of sample detection are decreased.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: September 21, 2010
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Bill Mawer, Geoff Beyer, Mark Elliot, Mark Piniarski, Roland Link, Simon Feldberg
  • Publication number: 20080217524
    Abstract: A document sampler can be arranged to receive a document in an insertion area of the document sampler. With such arrangements, a document can be directly inserted into a document sampler without an extra step of swabbing a document with a sample collection device. By eliminating the extra step of swabbing a document, the efficiency of sample detection is improved, sample detection is performed more rapidly, and operating costs of sample detection are decreased.
    Type: Application
    Filed: October 24, 2007
    Publication date: September 11, 2008
    Inventors: Bill Mawer, Geoff Beyer, Mark Elliot, Mark Piniarski, Roland Link, Simon Feldberg