Patents by Inventor Mark R. Alberding

Mark R. Alberding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120189846
    Abstract: A composition includes a carbon nanotube (CNT)-infused ceramic fiber material, wherein the CNT-infused ceramic fiber material includes: a ceramic fiber material of spoolable dimensions; and carbon nanotubes (CNTs) bonded to the ceramic fiber material. The CNTs are uniform in length and uniform in distribution. A continuous CNT infusion process includes (a) disposing a carbon-nanotube forming catalyst on a surface of a ceramic fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the ceramic fiber material, thereby forming a carbon nanotube-infused ceramic fiber material.
    Type: Application
    Filed: November 2, 2009
    Publication date: July 26, 2012
    Applicant: Lockheed Martin Corporation
    Inventors: Tushar K. SHAH, Slade H. GARDNER, Mark R. ALBERDING, Harry C. MALECKI
  • Publication number: 20120160966
    Abstract: An apparatus having a composite space-based structure with a first carbon nanotube infused material and a second carbon nanotube infused material. The first and second carbon nanotube infused materials each having a range of carbon nanotube loading selected to provide different functionalities.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 28, 2012
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. SHAH, Mark R. ALBERDING, Harry C. MALECKI, Samuel J. MARKKULA, John Anthony HUGHES
  • Patent number: 8158217
    Abstract: A carbon nanotube-infused fiber and a method for its production are disclosed. Nanotubes are synthesized directly on a parent fiber by first applying a catalyst to the fiber. The properties of the carbon nanotube-infused fiber will be a combination of those of the parent fiber as well as those of the infused carbon nanotubes.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: April 17, 2012
    Assignee: Applied Nanostructured Solutions, LLC
    Inventors: Tushar K. Shah, Slade H. Gardner, Mark R. Alberding
  • Publication number: 20120065300
    Abstract: A carbon nanotube-infused fiber and a method for its production are disclosed. Nanotubes are synthesized directly on a parent fiber by first applying a catalyst to the fiber. The properties of the carbon nanotube-infused fiber will be a combination of those of the parent fiber as well as those of the infused carbon nanotubes.
    Type: Application
    Filed: November 16, 2011
    Publication date: March 15, 2012
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC.
    Inventors: Tushar K. SHAH, Slade H. Gardner, Mark R. Alberding
  • Publication number: 20110297892
    Abstract: A composite includes a thermoplastic matrix material and a carbon nanotube (CNT)-infused fiber material dispersed through at least a portion of the thermoplastic matrix material.
    Type: Application
    Filed: December 8, 2010
    Publication date: December 8, 2011
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. SHAH, Harry C. Malecki, James A. Waicukauski, Mark R. Alberding
  • Publication number: 20110168089
    Abstract: A composition includes a carbon nanotube (CNT)-infused carbon fiber material that includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material. The infused CNTs are uniform in length and uniform in distribution. The CNT infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating. A continuous CNT infusion process includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.
    Type: Application
    Filed: February 26, 2010
    Publication date: July 14, 2011
    Applicant: Lockheed Martin Corporation
    Inventors: Tushar K. SHAH, Slade H. GARDNER, Mark R. ALBERDING, Harry C. MALECKI
  • Publication number: 20110168083
    Abstract: A composition includes a carbon nanotube (CNT)-infused ceramic fiber material, wherein the CNT-infused ceramic fiber material includes: a ceramic fiber material of spoolable dimensions; and carbon nanotubes (CNTs) bonded to the ceramic fiber material. The CNTs are uniform in length and uniform in distribution. A continuous CNT infusion process includes (a) disposing a carbon-nanotube forming catalyst on a surface of a ceramic fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the ceramic fiber material, thereby forming a carbon nanotube-infused ceramic fiber material.
    Type: Application
    Filed: February 26, 2010
    Publication date: July 14, 2011
    Applicant: Lockheed Martin Corporation
    Inventors: Tushar K. SHAH, Slade H. GARDNER, Mark R. ALBERDING, Harry C. MALECKI
  • Publication number: 20110171469
    Abstract: A composition includes a carbon nanotube (CNT)-infused aramid fiber material that includes an aramid fiber material of spoolable dimensions, a barrier coating conformally disposed about the aramid fiber material, and carbon nanotubes (CNTs) infused to the aramid fiber material. The infused CNTs are uniform in length and uniform in density. A continuous CNT infusion process includes:(a) disposing a barrier coating and a carbon nanotube (CNT)-forming catalyst on a surface of an aramid fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the aramid fiber material, thereby forming a carbon nanotube-infused aramid fiber material.
    Type: Application
    Filed: November 2, 2010
    Publication date: July 14, 2011
    Applicant: Applied NanoStructured Solutions, LLC
    Inventors: Tushar K. SHAH, Slade H. Gardner, Mark R. Alberding, Harry C. Malecki
  • Publication number: 20110143087
    Abstract: Flame-resistant composite materials containing carbon nanotubes are described herein. The flame-resistant composite materials contain an outer layer and at least one inner layer, containing a first polymer matrix and a second polymer matrix, respectively. The outer layer has an exterior surface and a first carbon nanotube-infused fiber material that contains a first fiber material and a first plurality of carbon nanotubes greater than about 50 ?m in length. In some embodiments, the at least one inner layer also contains a second fiber material and/or a second carbon nanotube-infused fiber material containing a second fiber material and a second plurality of carbon nanotubes. When present, the second plurality of carbon nanotubes are generally shorter in length than the first plurality of carbon nanotubes. Alignment of the carbon nanotubes in the outer layer can transfer heat away from the composite material's inner layer(s).
    Type: Application
    Filed: December 14, 2010
    Publication date: June 16, 2011
    Applicant: Applied Nanostructured Solutions, LLC
    Inventors: Mark R. ALBERDING, Harry C. Malecki, Tushar K. Shah, Daniel J. Adcock
  • Publication number: 20110135491
    Abstract: An apparatus having a composite land-based structure with a first carbon nanotube infused material and a second carbon nanotube infused material. The first and second carbon nanotube infused materials each having a range of carbon nanotube loading selected to provide different functionalities.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 9, 2011
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. SHAH, Mark R. Alberding, Harry C. Malecki, Samuel J. Markkula, John Anthony Hughes, Shawn C. Kline
  • Publication number: 20110133031
    Abstract: An apparatus having a composite air-based structure with a first carbon nanotube infused material and a second carbon nanotube infused material. The first and second carbon nanotube infused materials each having a range of carbon nanotube loading selected to provide different functionalities.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 9, 2011
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. Shah, Mark R. Alberding, Harry C. Malecki, Samuel J. Markkula, John Anthony Hughes, Shawn C. Kline
  • Publication number: 20110132245
    Abstract: An apparatus having a composite sea-based structure with a first carbon nanotube infused material and a second carbon nanotube infused material. The first and second carbon nanotube infused materials each having a range of carbon nanotube loading selected to provide different functionalities.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 9, 2011
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. SHAH, Mark R. Alberding, Harry C. Malecki, Samuel J. Markkula, John Anthony Hughes, Shawn C. Kline
  • Publication number: 20110123735
    Abstract: A structural support includes a cylindrical core, an inner layer within the core and an outer layer. The inner and outer layers include CNT-infused fiber materials in a thermoset matrix. A composite includes a thermoset matrix and a CNT-infused fiber material having CNTs with lengths between about 20 to about 500 microns or about 0.1 to about 15 microns. For the latter range, CNTs are present between about 0.1 to about 5 percent by weight of the composite. A method of making a structural support includes wet winding a first CNT-infused fiber about a cylindrical mandrel in a direction substantially parallel to the mandrel axis, wet winding a baseline layer about the first CNT-infused fiber at an angle substantially non-parallel to the mandrel axis, and wet winding a second CNT-infused fiber about the baseline layer in a direction substantially parallel to the mandrel axis.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. SHAH, Harry C. Malecki, Samuel J. Markkula, Mark R. Alberding
  • Publication number: 20110024694
    Abstract: A composite composition includes a plurality of carbon nanotube (CNT)-infused fibers dispersed in a matrix material. The amount of carbon nanotubes in the composition is in a range between about 0.1% percent by weight to about 60 percent by weight of the composite.
    Type: Application
    Filed: February 17, 2010
    Publication date: February 3, 2011
    Applicant: Lockheed Martin Corporation
    Inventors: Tushar K. SHAH, Bradley W. PIETRAS, Daniel Jacob ADCOCK, Harry C. MALECKI, Mark R. ALBERDING
  • Publication number: 20100279569
    Abstract: A composition includes a carbon nanotube (CNT)-infused glass fiber material, which includes a glass fiber material of spoolable dimensions and carbon nanotubes (CNTs) bonded to it. The CNTs are uniform in length and distribution. A continuous CNT infusion process includes: (a) disposing a carbon-nanotube forming catalyst on a surface of a glass fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the glass fiber material, thereby forming a carbon nanotube-infused glass fiber material. The continuous CNT infusion process optionally includes extruding a glass fiber material from a glass melt or removing sizing material from a pre-fabricated glass fiber material.
    Type: Application
    Filed: November 2, 2009
    Publication date: November 4, 2010
    Applicant: Lockheed Martin Corporation
    Inventors: Tushar K. SHAH, Slade H. Gardner, Mark R. Alberding, Harry C. Malecki
  • Publication number: 20100276072
    Abstract: A carbon nanotube-infused fiber and a method for its production are disclosed. Nanotubes are synthesized directly on a parent fiber by first applying a catalyst to the fiber. The properties of the carbon nanotube-infused fiber will be a combination of those of the parent fiber as well as those of the infused carbon nanotubes.
    Type: Application
    Filed: January 3, 2007
    Publication date: November 4, 2010
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Tushar K. Shah, Slade H. Gardner, Mark R. Alberding
  • Publication number: 20100272891
    Abstract: An apparatus having at least one carbon nanotube growth zone having a substrate inlet sized to allow a spoolable length substrate to pass therethrough. The apparatus also has at least one heater in thermal communication with the carbon nanotube growth zone. The apparatus has at least one feed gas inlet in fluid communication with the carbon nanotube growth zone. The apparatus is open to an atmospheric environment during operation.
    Type: Application
    Filed: July 8, 2010
    Publication date: October 28, 2010
    Applicant: Lockheed Martin Corporation
    Inventors: Harry C. MALECKI, James P. Loebach, Tushar K. Shah, Mark R. Alberding, Jack K. Braine, John A. Larue
  • Publication number: 20100270069
    Abstract: A composite for use in electromagnetic interference (EMI) shielding applications includes a carbon nanotube(CNT)-infused fiber material disposed in at least a portion of a matrix material. The composite is capable of absorbing or reflecting EM radiation, or combinations thereof in a frequency range from between about 0.01 MHz to about 18 GHz. The electromagnetic interference (EMI) shielding effectiveness (SE), is in a range from between about 40 decibels (dB) to about 130 dB. A method of manufacturing the composite includes disposing a CNT-infused fiber material in a portion of a matrix material with a controlled orientation of the CNT-infused fiber material within the matrix material, and curing the matrix material. A panel includes the composite and is adaptable to interface with a device for use in EMI shielding applications. The panel is further equipped with an electrical ground.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Applicant: Lockheed Martin Corporation
    Inventors: Tushar K. SHAR, Mark R. ALBERDING, Harry C. MALECKI
  • Publication number: 20100260998
    Abstract: A fiber sizing formulation includes (1) a nanoparticle (NP)solution that includes a dispersion of transition metal nanoparticles (NPs) in a solvent and (2) a first fiber sizing agent. The NPs disperse throughout the first fiber sizing agent after application of the fiber sizing formulation to a fiber and removal of the solvent. The NPs serve a function selected from a secondary sizing agent, a catalyst for further nanostructure growth on the fiber, and combinations thereof. A fiber includes a sizing disposed about the fiber. The sizing includes transition metal nanoparticles dispersed throughout the sizing. A method includes applying the sizing formulation to a fiber during manufacture of the fiber, and removing the solvent from the applied formulation. A method includes adding a solution of transition metal NPs to a sizing-coated fiber and baking, whereby the sizing solution of NPs is added before baking the sizing.
    Type: Application
    Filed: August 11, 2009
    Publication date: October 14, 2010
    Applicant: Lockheed Martin Corporation
    Inventors: James A. WAICUKAUSKI, Tushar K. Shah, Christina Gallo, Harry C. Malecki, Mark R. Alberding, Jordan T. Ledford
  • Publication number: 20100260931
    Abstract: A method for forming a CNT infused substrate comprises exposing a catalyst nanoparticle, a carbon feedstock gas, and a carrier gas to a CNT synthesis temperature, allowing a CNT to form on the catalyst nanoparticle, cooling the CNT, and exposing the cooled CNT to a surface of a substrate to form a CNT infused substrate.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 14, 2010
    Applicant: Lockheed Martin Corporation
    Inventors: Harry C. MALECKI, Tushar K. Shah, Mark R. Alberding