Patents by Inventor Mark R. Allen

Mark R. Allen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7679292
    Abstract: An LED light string employs a plurality of LEDs wired in block series-parallel, where the one or more series blocks, each driven at the same input voltage or rectified AC input voltage as the source voltage (110 VAC or 220 VAC), are coupled in parallel. This voltage matching requirement for direct AC drive places fundamental restrictions on the number of diodes on each diode series block, depending on the types of diodes used. The same method that apply to matching the sum of the LED lamps (VAC values) to the AC input, or applied voltage in an AC circuit apply to matching the sum of the LED lamps (VP values) to the full-wave or half-wave rectified AC (VP) voltage applied. Filtering capacitors may also be employed.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: March 16, 2010
    Assignee: Fiber Optic Designs, Inc.
    Inventors: David Allen, Mark R. Allen
  • Patent number: 7220022
    Abstract: A jacketed light emitting diode assembly is provided, which includes a light emitting diode including a set of positive and negative contacts, and a lens body containing a semiconductor chip and end portions of the contacts. An electrical wire set of first and second electrical wires are connected to the positive contact and the negative contact, respectively. A light transmissive cover receives the lens body, and has an opening through which at least one of the contact set and the electrical wire set passes. An integrally molded plastic jacket at the opening of the light transmissive cover provides a seal at the opening against moisture and airborne contaminants. A waterproof light string including one or more of the jacketed light emitting diode assemblies is also provided, as are related methods.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: May 22, 2007
    Assignee: Fiber Optic Designs, Inc.
    Inventors: Mark R. Allen, David Allen
  • Patent number: 6933707
    Abstract: Field Effect Transistors (FETs) are used to regulate current in a light emitting diode (LED). FETs are fundamentally voltage driven devices, where output current is governed by junction voltage. Since junction voltage can be controlled with little or no support circuitry, FETs present a solution to current regulation where cost, complexity, and perhaps even size are important.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: August 23, 2005
    Assignees: Luxidein Limited, Fiber Optic Designs
    Inventor: Mark R. Allen
  • Patent number: 6830358
    Abstract: An LED light string employs a plurality of LEDs wired in block series-parallel, where the one or more series blocks, each driven at the same input voltage as the source voltage (110 VAC or 220 VAC), are coupled in parallel. The LED light string interfaces to the source voltage using a common household plug; it may also include a corresponding common, household socket, coupled in electrical parallel, to enable multiple light strings to be connected to each other from end to end. In order to directly drive a network of diodes without current-limiting circuitry, the voltage of each series block of diodes must be matched to the input source voltage. This voltage matching requirement for direct AC drive places fundamental restrictions on the number of diodes on each diode series block, depending on the types of diodes used. For the voltage to be “matched,” in each series block, the peak input voltage must be less than or equal to the sum of the maximum diode voltages for each series block.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: December 14, 2004
    Assignee: Fiber Optic Designs, Inc.
    Inventor: Mark R. Allen
  • Publication number: 20040046510
    Abstract: An LED light string employs a plurality of LEDs wired in block series-parallel, where the one or more series blocks, each driven at the same input voltage as the source voltage (110 VAC or 220 VAC), are coupled in parallel. The LED light string interfaces to the source voltage using a common household plug; it may also include a corresponding common, household socket, coupled in electrical parallel, to enable multiple light strings to be connected to each other from end to end. LEDs of the light string may comprise either a single color LED or an LED including multiple sub-dies each of a different color. The LED lenses may be of any shape, and may be clear, clear-colored, or diffuse-colored. Moreover, each LED may have internal circuitry to provide for intermittent on-off blinking and/or intermittent LED sub-die color changes.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 11, 2004
    Applicant: FIBER OPTIC DESIGNS, INC
    Inventor: Mark R. Allen
  • Publication number: 20040013139
    Abstract: Field Effect Transistors (FETs) are used to regulate current in a light emitting diode (LED). FETs are fundamentally voltage driven devices, where output current is governed by junction voltage. Since junction voltage can be controlled with little or no support circuitry, FETs present a solution to current regulation where cost, complexity, and perhaps even size are important.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 22, 2004
    Applicant: FIBER OPTIC DESIGNS, INC. & LUXIDEIN LIMITED
    Inventor: Mark R. Allen
  • Publication number: 20030015968
    Abstract: An LED light string employs a plurality of LEDs wired in block series-parallel, where the one or more series blocks, each driven at the same input voltage as the source voltage (110 VAC or 220 VAC), are coupled in parallel. The LED light string interfaces to the source voltage using a common household plug; it may also include a corresponding common, household socket, coupled in electrical parallel, to enable multiple light strings to be connected to each other from end to end. In order to directly drive a network of diodes without current-limiting circuitry, the voltage of each series block of diodes must be matched to the input source voltage. This voltage matching requirement for direct AC drive places fundamental restrictions on the number of diodes on each diode series block, depending on the types of diodes used. For the voltage to be “matched,” in each series block, the peak input voltage must be less than or equal to the sum of the maximum diode voltages for each series block.
    Type: Application
    Filed: September 16, 2002
    Publication date: January 23, 2003
    Inventor: Mark R. Allen
  • Publication number: 20020149938
    Abstract: An LED light string employs a plurality of LEDs wired in block series-parallel, where the one or more series blocks, each driven at the same input voltage as the source voltage (110 VAC or 220 VAC), are coupled in parallel. The LED light string interfaces to the source voltage using a common household plug; it may also include a corresponding common, household socket, coupled in electrical parallel, to enable multiple light strings to be connected to each other from end to end. In order to directly drive a network of diodes without current-limiting circuitry, the voltage of each series block of diodes must be matched to the input source voltage. This voltage matching requirement for direct AC drive places fundamental restrictions on the number of diodes on each diode series block, depending on the types of diodes used. For the voltage to be “matched,” in each series block, the peak input voltage must be less than or equal to the sum of the maximum diode voltages for each series block.
    Type: Application
    Filed: March 29, 2001
    Publication date: October 17, 2002
    Inventor: Mark R. Allen
  • Patent number: 6461019
    Abstract: An LED light string employs a plurality of LEDs wired in block series-parallel, where the one or more series blocks, each driven at the same input voltage as the source voltage (110 VAC or 220 VAC), are coupled in parallel. The LED light string interfaces to the source voltage using a common household plug; it may also include a corresponding common, household socket, coupled in electrical parallel, to enable multiple light strings to be connected to each other from end to end. In order to directly drive a network of diodes without current-limiting circuitry, the voltage of each series block of diodes must be matched to the input source voltage. This voltage matching requirement for direct AC drive places fundamental restrictions on the number of diodes on each diode series block, depending on the types of diodes used. For the voltage to be “matched,” in each series block, the peak input voltage must be less than or equal to the sum of the maximum diode voltages for each series block.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: October 8, 2002
    Assignee: Fiber Optic Designs, Inc.
    Inventor: Mark R. Allen
  • Patent number: 6072280
    Abstract: An LED light string employs a plurality of LEDs wired in a series-parallel block. Further, each series-parallel block may be coupled in parallel, the parallel connection coupled across a supply voltage through an electrical interface. LEDs of the light string may comprise either a single color LED or an LED including multiple sub-dies, each sub-die of a different color. LED series-parallel blocks of the light string may be operated in continuous, periodic or pseudo-random state. The LED light string may provide polarized connectors to couple LED light strings end-to-end and in parallel with the supply voltage. The electrical interface may have one or more parallel outputs and a switch so as to operate multiple LED light strings in continuous, periodic or pseudo-random states. The LED light string may be adapted so as to employ LEDs of different drive voltages in each series section of the series-parallel block.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: June 6, 2000
    Assignee: Fiber Optic Designs, Inc.
    Inventor: Mark R. Allen