Patents by Inventor Mark R. Glanville

Mark R. Glanville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220364789
    Abstract: A heavies removal heat exchanger cools at least a portion of a feed gas stream. A scrubbing section receives the cooled main feed gas stream. A stripping section receives a fluid stream from the scrubbing section. A stripping gas feed expansion device receives a portion of the feed gas stream and is in fluid communication with the stripping section. A side draw vapor line receives a vapor stream from the vapor outlet of the stripping section and is in fluid communication with a reflux stream cooling passage of the heavies removal heat exchanger. A reflux separation device receives fluid from the heavies removal heat exchanger and has a liquid outlet and a vapor outlet. The liquid outlet is in fluid communication with the scrubbing section. A return vapor expansion device receives a vapor stream from the scrubbing section and directs a cooled vapor stream to a return vapor stream warming passage of the heavies removal heat exchanger.
    Type: Application
    Filed: May 13, 2022
    Publication date: November 17, 2022
    Inventors: Douglas A. Ducote, Jr., Timothy P. Gushanas, Mark R. Glanville, Ravikumar Vipperla, Peter J. Turner, Brent A. Heyrman
  • Publication number: 20200232703
    Abstract: A system for removing freezing components from a feed gas includes a heat exchanger, a scrub column and a return vapor expansion device. The heat exchanger includes a reflux cooling passage and a return vapor passage. Vapor from the scrub column is directed through the return vapor expansion device, where the temperature and pressure are lowered. The resulting cooled fluid then travels to the return vapor passage of the heat exchanger and is used to cool a vapor stream in the reflux cooling passage to create a reflux fluid stream that is directed to the scrub column.
    Type: Application
    Filed: April 8, 2020
    Publication date: July 23, 2020
    Inventors: Douglas A. Ducote, JR., Timothy P. Gushanas, Mark R. Glanville
  • Patent number: 10619918
    Abstract: A system for removing freezing components from a feed gas includes a heavy hydrocarbon removal heat exchanger and a scrub device. The scrub device includes a scrub column that receives a cooled feed gas stream from the heat exchanger and a reflux separation device. Vapor from the scrub column is directed to the heat exchanger and cooled to create a reflux stream that includes a liquid component. This reflux stream is directed to the reflux separation device and a resulting liquid component stream is used to reflux the column. Vapor from the reflux separation device is expanded and directed to the heat exchanger, where it provides refrigeration, and a processed feed gas line.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: April 14, 2020
    Assignee: Chart Energy & Chemicals, Inc.
    Inventors: Douglas A. Ducote, Jr., Timothy P. Gushanas, Mark R. Glanville
  • Publication number: 20190204007
    Abstract: A system for removing freezing components from a feed gas includes a heavy hydrocarbon removal heat exchanger and a scrub device. The scrub device includes a scrub column that receives a cooled feed gas stream from the heat exchanger and a reflux separation device. Vapor from the scrub column is directed to the heat exchanger and cooled to create a reflux stream that includes a liquid component. This reflux stream is directed to the reflux separation device and a resulting liquid component stream is used to reflux the column. Vapor from the reflux separation device is expanded and directed to the heat exchanger, where it provides refrigeration, and a processed feed gas line.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: Douglas A. Ducote, JR., Timothy P. Gushanas, Mark R. Glanville
  • Patent number: 10267559
    Abstract: A system for liquefying a gas includes a liquefaction heat exchanger having a feed gas inlet adapted to receive a feed gas and a liquefied gas outlet through which the liquefied gas exits after the gas is liquefied in the liquefying passage of the heat exchanger by heat exchange with a primary refrigeration passage. A mixed refrigerant compressor system is configured to provide refrigerant to the primary refrigeration passage. An expander separator is in communication with the liquefied gas outlet of the liquefaction heat exchanger, and a cold gas line is in fluid communication with the expander separator. A cold recovery heat exchanger receives cold vapor from the cold gas line and liquid refrigerant from the mixed refrigerant compressor system so that the refrigerant is cooled using the cold vapor.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 23, 2019
    Assignee: Chart Energy & Chemicals, Inc.
    Inventors: Douglas A. Ducote, Jr., Timothy P. Gushanas, Mark R. Glanville
  • Patent number: 10060671
    Abstract: A system for liquefying a gas includes a liquefaction heat exchanger having a feed gas inlet adapted to receive a feed gas and a liquefied gas outlet through which the liquefied gas exits after the gas is liquefied in the liquefying passage of the heat exchanger by heat exchange with a primary refrigeration passage. A mixed refrigerant compressor system is configured to provide refrigerant to the primary refrigeration passage. An expander separator is in communication with the liquefied gas outlet of the liquefaction heat exchanger, and a cold gas line is in fluid communication with the expander separator. A cold recovery heat exchanger receives cold vapor from the cold gas line and liquid refrigerant from the mixed refrigerant compressor system so that the refrigerant is cooled using the cold vapor.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: August 28, 2018
    Assignee: Chart Energy & Chemicals, Inc.
    Inventors: Douglas A. Ducote, Jr., Timothy P. Gushanas, Mark R. Glanville
  • Publication number: 20180003430
    Abstract: A system for liquefying a gas includes a liquefaction heat exchanger having a feed gas inlet adapted to receive a feed gas and a liquefied gas outlet through which the liquefied gas exits after the gas is liquefied in the liquefying passage of the heat exchanger by heat exchange with a primary refrigeration passage. A mixed refrigerant compressor system is configured to provide refrigerant to the primary refrigeration passage. An expander separator is in communication with the liquefied gas outlet of the liquefaction heat exchanger, and a cold gas line is in fluid communication with the expander separator. A cold recovery heat exchanger receives cold vapor from the cold gas line and liquid refrigerant from the mixed refrigerant compressor system so that the refrigerant is cooled using the cold vapor.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: Douglas A. Ducote, JR., Timothy P. Gushanas, Mark R. Glanville
  • Publication number: 20160298898
    Abstract: A system for liquefying a gas includes a liquefaction heat exchanger having a feed gas inlet adapted to receive a feed gas and a liquefied gas outlet through which the liquefied gas exits after the gas is liquefied in the liquefying passage of the heat exchanger by heat exchange with a primary refrigeration passage. A mixed refrigerant compressor system is configured to provide refrigerant to the primary refrigeration passage. An expander separator is in communication with the liquefied gas outlet of the liquefaction heat exchanger, and a cold gas line is in fluid communication with the expander separator. A cold recovery heat exchanger receives cold vapor from the cold gas line and liquid refrigerant from the mixed refrigerant compressor system so that the refrigerant is cooled using the cold vapor.
    Type: Application
    Filed: April 11, 2016
    Publication date: October 13, 2016
    Inventors: Douglas A. Ducote, JR., Timothy P. Gushanas, Mark R. Glanville