Patents by Inventor Mark R. Holst

Mark R. Holst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6540814
    Abstract: An ion implantation process system, including an ion implanter apparatus for carrying out an ion implantation process. A supply of source gas for the ion implantation process is arranged to flow to the ion implanter apparatus, which discharges an effluent gas stream including ionization products of the source gas during the ion implantation process. The system includes an effluent abatement apparatus for removing hazardous effluent species from the effluent gas stream. The source gas may be furnished from a low pressure gas source in which the source gas is sorptively retained in a vessel on a sorbent medium having affinity for the source gas, and desorbed for dispensing to the process system. A novel scrubbing composition may be employed for effluent treatment, and the scrubbing composition breakthrough of scrubbable component may be monitored with a device such as a quartz microbalance monitor.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: April 1, 2003
    Assignee: Advanced Technology Materials, Inc
    Inventors: Michael W. Hayes, Mark R. Holst, Jose I. Arno, Glenn M. Tom
  • Publication number: 20020092421
    Abstract: An ion implantation process system, including an ion implanter apparatus for carrying out an ion implantation process. A supply of source gas for the ion implantation process is arranged to flow to the ion implanter apparatus, which discharges an effluent gas stream including ionization products of the source gas during the ion implantation process. The system includes an effluent abatement apparatus for removing hazardous effluent species from the effluent gas stream. The source gas may be furnished from a low pressure gas source in which the source gas is sorptively retained in a vessel on a sorbent medium having affinity for the source gas, and desorbed for dispensing to the process system. A novel scrubbing composition may be employed for effluent treatment, and the scrubbing composition breakthrough of scrubbable component may be monitored with a device such as a quartz microbalance monitor.
    Type: Application
    Filed: November 29, 2001
    Publication date: July 18, 2002
    Inventors: Michael W. Hayes, Mark R. Holst, Jose I. Arno, Glenn M. Tom
  • Patent number: 6391267
    Abstract: A method and system for reducing pollutant concentration within an internal combustion engine exhaust stream is disclosed. Soot and products of incomplete combustion in the engine exhaust stream are destroyed by oxidizing them in a flameless thermal oxidizer that contains a matrix of heat-resistant media. Methods and systems for increasing particle residence time within the thermal oxidizer are also disclosed. These techniques include employing electrostatic precipitation, centrifugal force, and particle impaction sections. A method and system for reducing oxides of nitrogen (NOx) emissions is also disclosed. Low NOx concentration may be obtained by adding a SCR system after a thermal oxidizer, by tuning the engine to produce low NOx/high soot and destroying the soot in a thermal oxidizer, and by injecting a reductant into the thermal oxidizer. The flameless thermal oxidizer may be located between the engine and a turbo-charger to enhance thermal efficiency and to reduce turbo-charger wear.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: May 21, 2002
    Assignee: Thermatrix, Inc.
    Inventors: Richard J. Martin, John D. Stilger, Mark R. Holst, John D. Young, Michael P. Barkdoll, Bradley L. Edgar
  • Patent number: 6338312
    Abstract: An ion implantation process system, including an ion implanter apparatus for carrying out an ion implantation process. A supply of source gas for the ion implantation process is arranged to flow to the ion implanter apparatus, which discharges an effluent gas stream including ionization products of the source gas during the ion implantation process. The system includes an effluent abatement apparatus for removing hazardous effluent species from the effluent gas stream. The source gas may be furnished from a low pressure gas source in which the source gas is sorptively retained in a vessel on a sorbent medium having affinity for the source gas, and desorbed for dispensing to the process system. A novel scrubbing composition may be employed for effluent treatment, and the scrubbing composition breakthrough of scrubbable component may be monitored with a device such as a quartz microbalance monitor.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: January 15, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Michael W. Hayes, Mark R. Holst, Jose I. Arno
  • Publication number: 20010008123
    Abstract: An ion implantation process system, including an ion implanter apparatus for carrying out an ion implantation process. A supply of source gas for the ion implantation process is arranged to flow to the ion implanter apparatus, which discharges an effluent gas stream including ionization products of the source gas during the ion implantation process. The system includes an effluent abatement apparatus for removing hazardous effluent species from the effluent gas stream. The source gas may be furnished from a low pressure gas source in which the source gas is sorptively retained in a vessel on a sorbent medium having affinity for the source gas, and desorbed for dispensing to the process system. A novel scrubbing composition may be employed for effluent treatment, and the scrubbing composition breakthrough of scrubbable component may be monitored with a device such as a quartz microbalance monitor.
    Type: Application
    Filed: April 15, 1998
    Publication date: July 19, 2001
    Inventors: MICHAEL W. HAYES, MARK R. HOLST, JOSE I. ARNO
  • Patent number: 6257869
    Abstract: A matrix bed is disclosed in which a non-planar reaction wave front is formed during operation. This is accomplished by heating the matrix bed, containing heat-resistant material, until at least a reaction portion of the matrix bed is above the temperature required for a plurality of reactant gas streams to react. Next, the reactant gas streams are directed through the matrix bed in a manner so as to form at least a Bunsen, Burke-Schumann, inverted-V, or some other type of non-planar reaction wave front at the portion of the matrix bed that is heated above the reactant gas streams reaction temperature. At the non-planar reaction wave front, the reactant gas streams react to produce a reaction product gas stream that is then exhausted from the matrix bed.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: July 10, 2001
    Assignee: Thermatrix, Inc.
    Inventors: Richard J. Martin, John D. Stilger, Mark R. Holst, John D. Young, Bradley L. Edgar
  • Patent number: 6126913
    Abstract: The present invention provides thermal oxidizers containing improved preheating designs and processes for improving the preheating of thermal oxidizers. The processes are practiced by preheating the matrix-bed of matrix materials in a flow path that is opposite in direction to the flow path for the processing fluids through the matrix bed. In such a process, there is a substantial reduction in the time and energy required for the preheating of the matrix bed in comparison to the prior processes using same flow direction preheating.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: October 3, 2000
    Assignee: Thermatrix, Inc.
    Inventors: Richard J. Martin, John D. Stilger, Mark R. Holst
  • Patent number: 6003305
    Abstract: A process is provided for preparing oxymorphone from morphine by:(1) reacting morphine with (1a) an acyl halide or anhydride to form 3-acylmorphine, or (1b) reacting morphine with benzyl-halide to form 3-benzylmorphine;(2) Oxidizing the 6-hydroxy group of the 3-acyl or 3-benzylmorphine so as to form the corresponding 3-acyl or 3-benzylmorphinone; and thereafter either by (3a) or (3b):(3a) introducing a .beta.-oriented hydroxy group at the 14-position of the 3-acyl- or 3-benzyl-morphinone with aqueous hydrogen peroxide and an acid at a temperature of about 15.degree. to about 70.degree. C.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: December 21, 1999
    Assignee: Thermatrix, Inc.
    Inventors: Richard J. Martin, John D. Stilger, Mark R. Holst, John D. Young, Michael P. Barkdoll, Bradley L. Edgar
  • Patent number: 5989010
    Abstract: A matrix bed is disclosed in which a non-planar reaction wave front is formed during operation. This is accomplished by heating the matrix bed, containing heat-resistant material, until at least a reaction portion of the matrix bed is above the temperature required for a plurality of reactant gas streams to react. Next, the reactant gas streams are directed through the matrix bed in a manner so as to form at least a Bunsen, Burke-Schumann, inverted-V, or some other type of non-planar reaction wave front at the portion of the matrix bed that is heated above the reactant gas streams reaction temperature. At the non-planar reaction wave front, the reactant gas streams react to produce a reaction product gas stream that is then exhausted from the matrix bed.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: November 23, 1999
    Assignee: Thermatrix, Inc.
    Inventors: Richard J. Martin, John D. Stilger, Mark R. Holst, John D. Young, Bradley L. Edgar
  • Patent number: 5914091
    Abstract: A point-of-use catalytic oxidation system, for treatment of a VOC-containing gas stream, including: a heat exchanger for heat exchange of a VOC-containing gas stream and a VOC-reduced gas stream at higher temperature than the VOC-containing gas stream, for heat recovery from the VOC-reduced gas stream for cooling thereof, to preheat the VOC-containing gas stream; a supplemental heater for supplemental heating of preheated VOC-containing gas, if and as required, to an elevated temperature for catalytic oxidation of VOC therein; and a bed of catalytic oxidizer material for catalytic oxidation of VOC in the VOC-containing gas stream, to yield the VOC-reduced gas stream. The heat exchanger, supplemental heater, and bed of catalytic oxidizer material are sized, constructed, arranged, and operated to effect autothermal catalytic oxidation of VOC in the bed of catalytic oxidizer material.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: June 22, 1999
    Assignee: ATMI Ecosys Corp.
    Inventors: Mark R. Holst, W. Karl Olander, Glenn M. Tom
  • Patent number: 5770784
    Abstract: Improved methods for the treatment of commingled wastes and process systems for practicing those methods are provided. The methods are practiced by first treating the commingled waste material in a primary treatment unit in the presence of a carrier fluid to separate the organic waste from the inorganic waste. The carrier fluid and the gaseous products from the primary unit are then treated in a flameless oxidizer, which efficiently destroys any remaining organic compounds. In one embodiment, the process gases exiting the flameless oxidizer are recycled to the primary treatment unit.
    Type: Grant
    Filed: January 28, 1997
    Date of Patent: June 23, 1998
    Assignee: Thermatrix, Inc.
    Inventors: Ann C. Heywood, Mark R. Holst, Richard J. Martin, John T. Schofield
  • Patent number: 5637283
    Abstract: Methods and apparatus are provided for destruction of volatile organic compounds ("VOC's") from process fumes having variable amounts of such VOC's wherein a nominal amount of the fumes are passed through an oxidizer for destruction of the VOC's and the hot products from the oxidizer are fed to an afterburner that is principally made up of a matrix bed of heat resistant material. The heat from the oxidized gases heats the matrix bed. Fume flows exceeding the nominal flow are bypassed directly to an inlet port of the afterburner where they are passed through the matrix bed of the afterburner, which has been heated by the oxidized gases from the oxidizer, and are combusted into additional gaseous products in a combustion wave. The system allows for utilization of the heat produced from the oxidation of the nominal flow for destructing fume flows that exceed the nominal flow.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 10, 1997
    Assignee: Thermatrix, Inc.
    Inventors: John D. Stilger, Richard J. Martin, Mark R. Holst, Samson C. Yee
  • Patent number: 5601790
    Abstract: Methods and apparatus are provided for destruction of volatile organic compounds ("VOC's") from process fumes having variable amounts of such VOC's wherein a nominal amount of the fumes are passed through an oxidizer for destruction of the VOC's and the hot products from the oxidizer are fed to an afterburner that is principally made up of a matrix bed of heat resistant material. The heat from the oxidized gases heats the matrix bed. Fume flows exceeding the nominal flow are bypassed directly to an inlet port of the afterburner where they are passed through the matrix bed of the afterburner, which has been heated by the oxidized gases from the oxidizer, and are combusted into additional gaseous products in a combustion wave. The system allows for utilization of the heat produced from the oxidation of the nominal flow for destructing fume flows that exceed the nominal flow.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: February 11, 1997
    Assignee: Thermatrix, Inc.
    Inventors: John D. Stilger, Richard J. Martin, Mark R. Holst, Samson C. Yee
  • Patent number: 5533890
    Abstract: An apparatus and method for the monitoring and abatement of fugitive VOC emissions is disclosed. Suction, generated by a fume pump or a venturi type ejector, pulls air and VOC's from one or more sources of VOC emissions such as the mechanical seals of pumps or compressors. These VOC fumes are collected, separated from any liquids in a knock-out pot, and directed to a flameless combustor/thermal oxidizer comprising a tube packed with heat resistant material and surrounded by an electric heater and thermal insulation. This matrix bed of heat resistant materials is heated to a temperature sufficient to oxidize/destroy the VOC emissions. Thereafter, an optional convective quench section may be used to lower the temperature of the exhaust gases prior to their release to the atmosphere. By monitoring the temperature and/or the amount of power needed, changes in VOC emissions can be detected.
    Type: Grant
    Filed: February 23, 1995
    Date of Patent: July 9, 1996
    Assignee: Thermatrix, Inc.
    Inventors: Mark R. Holst, Richard J. Martin, John D. Stilger, Samson C. Yee
  • Patent number: 5320518
    Abstract: Methods and apparatus are provided for establishing and controlling the stability and movement of a reaction wave of reacting gases in a matrix of solid heat-resistant matter, wherein such reacting gases may be recuperatively pre-heated. At least a portion of the bed is initially preheated above the autoignition temperature of the mixture whereby the mixture reacts upon being introduced into the matrix thereby initiating a self-sustaining reaction region, after which the pre-heating can be terminated. The stability and movement of the wave within the matrix is maintained by monitoring the temperatures along the flowpath of the gases through the bed and adjusting the flow of the gases and/or vapors or air to maintain and stabilize the wave in the bed. The method and apparatus provide for the reaction or combustion of gases to minimize NO.sub.x and undesired products of incomplete combustion.
    Type: Grant
    Filed: September 15, 1992
    Date of Patent: June 14, 1994
    Assignee: Thermatrix, Inc.
    Inventors: John D. Stilger, Richard J. Martin, Mark R. Holst
  • Patent number: 5284776
    Abstract: A method of determining the concentration of a quinolone in an aqueous solution comprising reacting the quinolone with an iron salt under conditions and for a time period sufficient to form a color change in the aqueous solution and comparing the resulting color change to an appropriate standard, and optionally comprising the further step of adjusting the pH of the aqueous quinolone solution to a value of less than about 7.0 prior to reacting the aqueous solution with an iron salt, as well as a test kit useful for carrying out such a method.
    Type: Grant
    Filed: August 17, 1993
    Date of Patent: February 8, 1994
    Assignee: Abbott Laboratories
    Inventors: James J. Napier, Mark R. Holst, Bhi-Yung Cheng
  • Patent number: 5165884
    Abstract: Method and apparatus are provided for establishing and controlling the stability and movement of a reaction wave of reacting gases in a matrix of solid heat-resistant matter. At least a portion of the bed is initially preheated above the autoignition temperature of the mixture whereby the mixture reacts upon being introduced into the matrix thereby initiating a self-sustaining reaction wave, after which, the pre-heating can be terminated. The stability and movement of the wave within the matrix is maintained by monitoring the temperatures along the flowpath of the gases through the bed and adjusting the flow of the gases and/or vapors or air to maintain and stabilize the wave in the bed. The method and apparatus provide for the reaction or combustion of gases to minimize NO.sub.x and undesired products of incomplete combustion.
    Type: Grant
    Filed: July 5, 1991
    Date of Patent: November 24, 1992
    Assignee: Thermatrix, Inc.
    Inventors: Richard J. Martin, John D. Stilger, Mark R. Holst