Patents by Inventor Mark R. Mis

Mark R. Mis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150011699
    Abstract: Organic polymeric bi-metallic alkoxide or aryloxide composites are used as dielectric materials in various devices with improved properties such as improved mobility. These composites comprise a poly(meth)acrylate or polyester having metal coordination sites, and the same or different bi-metallic alkoxide or aryloxide molecules that are coordinated with the organic polymer. The bi-metallic alkoxide or aryloxide molecules can be represented by Structure (I) shown herein. Such composites are generally soluble at room temperature in various organic solvents and be provided in homogeneous organic solvent solutions that can be suitably applied to a substrate to form dielectric materials.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Deepak Shukla, Dianne Marie Meyer, Mark R. Mis, Matthew Dirmyer
  • Publication number: 20140287349
    Abstract: A thiosulfate polymer composition includes an electron-accepting photosensitizer component, either as a separate compound or as an attachment to the thiosulfate polymer. The thiosulfate polymer composition can be applied to various articles, or used to form a predetermined polymeric pattern after photothermal reaction to form crosslinked disulfide bonds, removing non-crosslinked polymer, and reaction with a disulfide-reactive material. Such thiosulfate polymer compositions can also be used to sequester metals in nanoparticulate form, and as a way for shaping human hair in hairdressing operations.
    Type: Application
    Filed: January 20, 2014
    Publication date: September 25, 2014
    Inventors: Deepak Shukla, Mark R. Mis, Dianne Marie Meyer
  • Publication number: 20140288253
    Abstract: A thiosulfate polymer includes both an electron-accepting photosensitizer component and thiosulfate groups in the same molecule, arranged in random order along the backbone. The thiosulfate polymer composition can be formulated into compositions and applied to various articles, or used to form a predetermined polymeric pattern after photothermal reaction to form crosslinked disulfide bonds, removing non-crosslinked polymer, and reaction with a disulfide-reactive material. Such thiosulfate polymer compositions can also be used to sequester metals in nanoparticulate form, and as a way for shaping human hair in hairdressing operations.
    Type: Application
    Filed: January 20, 2014
    Publication date: September 25, 2014
    Inventors: Mark R. Mis, Deepak Shukla
  • Publication number: 20140287365
    Abstract: A thiosulfate polymer composition includes an electron-accepting photosensitizer component, either as a separate compound or as an attachment to the thiosulfate polymer. The thiosulfate polymer composition can be applied to various articles and used to form a predetermined polymeric pattern after photothermal reaction to form crosslinked disulfide bonds, removing non-crosslinked polymer, and reaction with a disulfide-reactive material.
    Type: Application
    Filed: January 20, 2014
    Publication date: September 25, 2014
    Inventors: Deepak Shukla, Kevin M. Donovan, Mark R. Mis
  • Publication number: 20140147885
    Abstract: Semi-permeable particle can be used to facilitate chemical reactions such as catalytic reactions. The semi-permeable particles are permeable to molecules having a molar mass of 1000 Daltons or less and have a mode particle size of at least 1 ?m. The semi-permeable particles have multiple discrete cavities containing an aqueous solution or suspension of an organic catalytic material. The semi-permeable particles are also impermeable to the organic catalytic materials so they are retained within the multiple discrete cavities, and the semi-permeable particles can be reused multiple times for the same or different chemical reaction.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Mark R. Mis, Mridula Nair, Douglas R. Robello
  • Publication number: 20140148523
    Abstract: Porous particles can be prepared using an evaporative limited coalescence process in which one or more discrete cavities are stabilized within the continuous polymeric solid phase of the porous particles. The one or more discrete cavities have inner walls and are dispersed within the continuous polymeric solid phase. The porous particles further comprise a cavity stabilizing hydrocolloid on the inner walls of the one or more discrete cavities, and an amphiphilic (low HLB) block copolymer that is disposed at the interface of the discrete cavities and the continuous polymeric solid phase.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Mridula Nair, Tamara K. Jones, Mark R. Mis
  • Publication number: 20140148330
    Abstract: Semi-permeable particle can be used to facilitate chemical reactions. The semi-permeable particles are permeable to molecules having a molar mass of 1000 Daltons or less, have a mode particle size of at least 1 ?m, and comprise nanoparticles of catalytically active metallic materials disposed within at least some of multiple discrete cavities in the continuous polymeric phase. The nanoparticles of catalytically active metallic materials (a) comprise one or more elements selected from Groups 8, 9, 10, and 11 of the Periodic Table, and (b) have an effective diameter of at least 1 nm and up to and including 200 nm.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Douglas R. Robello, Mridula Nair, Mark R. Mis, Matthew Dirmyer
  • Publication number: 20140128551
    Abstract: Organic polymeric multi-metallic alkoxide or aryloxide composites are used as dielectric materials in various devices with improved properties such as improved mobility. These composites comprise an organic polymer comprising metal coordination sites, and multi-metallic alkoxide or aryloxide molecules that are coordinated with the organic polymer, the multi-metallic alkoxide or aryloxide molecules being represented by: (M)n(OR)x wherein at least one M is a metal selected from Group 2 of the Periodic Table and at least one other M is a metal selected from any of Groups 3 to 12 and Rows 4 and 5 of the Periodic Table, n is an integer of at least 2, R represents the same or different alkyl or aryl groups, and x is an integer of at least 2.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Inventors: Deepak Shukla, Dianne M. Meyer, Mark R. Mis, Matthew Dirmyer
  • Patent number: 8692238
    Abstract: An organic film-forming polymer has a Tg of at least 70° C. and comprises a backbone comprising recurring units of Structure (A) shown in this application. These organic film-forming polymers can be used as dielectric materials in various devices with improved properties such as improved mobility.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 8, 2014
    Assignee: Eastman Kodak Company
    Inventors: Deepak Shukla, Douglas R. Robello, Mark R. Mis, Wendy G. Ahearn, Dianne M. Meyer
  • Publication number: 20130285061
    Abstract: An organic film-forming polymer has a Tg of at least 70° C. and comprises a backbone comprising recurring units of Structure (A) shown in this application. These organic film-forming polymers can be used as dielectric materials in various devices with improved properties such as improved mobility.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Inventors: Deepak Shukla, Douqlas R. Robello, Mark R. Mis, Wendy G. Ahearn, Dianne M. Meyer
  • Patent number: 8434857
    Abstract: A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprising water and a water dispersible polyurethane additive of the general formula of (I) wherein Z is the central portion of a monomer unit that is the polymerization product of a diisocyanate; X1—Y1—X1 represents one or more soft segments wherein Y1 represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; W is the central portion of one or more units containing an acid group; X2—Y2—X2 represents one or more hard segments wherein Y2 represents the central portion of a unit that is the polymerization product of a C2-C8 diol or diamine having a molecular weight of less than 250 Daltons; and X1, V and X2 can be the same or different and are an —O— or —N— atom; and further wherein the poly
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: May 7, 2013
    Assignee: Eastman Kodak Company
    Inventors: Catherine A. Falkner, Yongcai Wang, Hwei-Ling Yau, Douglas R. Robello, Mark R. Mis
  • Publication number: 20120277366
    Abstract: An inkjet printing fluid composition comprising water, colorant, acrylic latex polymer, and a water dispersible polyurethane additive having an acid number greater than 50, preferably between 50 and 150, more preferably from 60 to 100, and most preferably from 60 to 90. The invention provides inkjet printing fluid compositions, such as pigment-based inkjet printing inks, which contain an acrylic latex polymer which provides increased optical density for printed images, and a water dispersible polyurethane additive that enables the latex-containing printing fluid to be recirculated for extended periods in a recirculating printing fluid printing system without significant fluid destabilization or pressure build up or filter clogging. The invention further provides a method for printing an inkjet image comprising: I) providing an inkjet printing fluid according to the invention; and II) jetting the inkjet printing fluid in the form of ink drops onto a recording element to form a printed image.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Inventors: Mark R. Mis, Grace Ann Bennett, Catherine A. Falkner
  • Publication number: 20120274685
    Abstract: A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprises water, colorant, acrylic latex polymer, and a water dispersible polyurethane additive having an acid number greater than 50. The acrylic latex polymer provides increased optical density for printed images, and the water dispersible polyurethane additive enables the latex-containing printing fluid to be recirculated for extended periods without significant fluid destabilization or pressure build up or filter clogging. Also disclosed is method of continuous inkjet printing employing such a printing system.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Inventors: Mark R. Mis, Grace Ann Bennett, Catherine A. Falkner
  • Publication number: 20120050415
    Abstract: A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprising water and a water dispersible polyurethane additive of the general formula of (I) wherein Z is the central portion of a monomer unit that is the polymerization product of a diisocyanate; X1—Y1—X1 represents one or more soft segments wherein Y1 represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; W is the central portion of one or more units containing an acid group; X2—Y2—X2 represents one or more hard segments wherein Y2 represents the central portion of a unit that is the polymerization product of a C2-C8 diol or diamine having a molecular weight of less than 250 Daltons; and X1, V and X2 can be the same or different and are an —O— or —N— atom; and further wherein the poly
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Inventors: Catherine A. Falkner, Yongcai Wang, Hwei-Ling Yau, Douglas R. Robello, Mark R. Mis
  • Patent number: 8119328
    Abstract: An imaging element is used to provide images based on the difference in index of refraction caused by imaging actinic radiation. Imaging provides desired results by the creation or elimination of light scattering in a two-phase imaging medium in which at least one phase contains a material that is capable of having a refractive index change in response to imaging actinic radiation. For example, if the refractive indices of the two phases are initially matched, imaging can cause a mismatch in imaged regions. Alternatively, the refractive indices of the two phases can be initially mismatched and imaging can create a match of refractive indices in imaged regions. An image can be produced using a controlled amount of imaging actinic radiation without any chemical processing or heating.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: February 21, 2012
    Assignee: Eastman Kodak Company
    Inventors: Douglas R. Robello, Mark R. Mis
  • Patent number: 7989536
    Abstract: A polymeric nanocomposite comprises a non-polar hyperbranched polystyrene resin. An exfoliated or intercalated onium functionalized clay is dispersed within the resin. Such nanocomposites are more compatible with non-polar polymer matrices used in various articles of manufacture.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: August 2, 2011
    Assignee: Eastman Kodak Company
    Inventors: Mark R. Mis, Douglas R. Robello, Thomas N. Blanton, Craig L. Barnes
  • Publication number: 20110184113
    Abstract: A polymeric nanocomposite comprises a non-polar hyperbranched polystyrene resin. An exfoliated or intercalated onium functionalized clay is dispersed within the resin. Such nanocomposites are more compatible with non-polar polymer matrices used in various articles of manufacture.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 28, 2011
    Inventors: Mark R. Mis, Douglas R. Robello, Thomas N. Blanton, Craig L. Barnes
  • Publication number: 20100081749
    Abstract: A polymeric nanocomposite comprises a non-polar hyperbranched polystyrene resin. An exfoliated or intercalated onium functionalized clay is dispersed within the resin. Such nanocomposites are more compatible with non-polar polymer matrices used in various articles of manufacture.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Inventors: Mark R. Mis, Douglas R. Robello, Thomas N. Blanton, Craig L. Barnes
  • Publication number: 20100035176
    Abstract: An imaging element is used to provide images based on the difference in index of refraction caused by imaging actinic radiation. Imaging provides desired results by the creation or elimination of light scattering in a two-phase imaging medium in which at least one phase contains a material that is capable of having a refractive index change in response to imaging actinic radiation. For example, if the refractive indices of the two phases are initially matched, imaging can cause a mismatch in imaged regions. Alternatively, the refractive indices of the two phases can be initially mismatched and imaging can create a match of refractive indices in imaged regions. An image can be produced using a controlled amount of imaging actinic radiation without any chemical processing or heating.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 11, 2010
    Inventors: Douglas R. Robello, Mark R. Mis
  • Patent number: 7459263
    Abstract: The invention relates to an optical recording material comprising: a polymeric matrix; a dewarbenzene derivative reactant capable of undergoing isomerization to a benzene product upon triplet excitation, thereby causing a change in optical properties; and a sensitizer capable of absorbing actinic radiation to cause triplet energy transfer to said reactant, wherein the algebraic sum of the excitation energy of said sensitizer and its reduction potential is at least 0.05 eV less than the oxidation potential of said reactant, thereby precluding one-electron oxidation of said reactant. The invention further relates to an optical device comprising regional variations in concentrations of reactants and products produced by triplet chain isomerization, thereby providing a pattern of intelligence.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: December 2, 2008
    Assignee: Eastman Kodak Company
    Inventors: Samir Y. Farid, Douglas R. Robello, Joseph P. Dinnocenzo, Paul B. Merkel, Lorraine Ferrar, Yeonsuk Roh, Mark R. Mis