Patents by Inventor Mark Rechtsteiner

Mark Rechtsteiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8420180
    Abstract: Electrostatic deposition of high performance powdered materials onto gas turbine surfaces. The process also includes post-deposition thermal staging of the deposited powder to provide a durable coating that will satisfy the demands of turbine engine operation. The process envisions application of organic-based powdered materials, glass/ceramic powdered materials and metal-based powdered materials and combinations thereof using electrostatic techniques to components exposed to low temperature operations, such as may be found in the front section of a gas turbine engine or to the exterior portions of an aircraft engine, and metal-containing glass ceramics, glass-ceramic materials, or materials that can be transformed into glass ceramic materials, when applied to components exposed to high temperature operations, such as may be found in the turbine and exhaust sections of a gas turbine engine or the flaps of an aircraft.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: April 16, 2013
    Assignee: General Electric Company
    Inventors: Matthew B. Buczek, Andrew J. Skoog, Mark Rechtsteiner, Jane Ann Murphy
  • Publication number: 20090148614
    Abstract: Electrostatic deposition of high performance powdered materials onto gas turbine surfaces. The process also includes post-deposition thermal staging of the deposited powder to provide a durable coating that will satisfy the demands of turbine engine operation. The process envisions application of organic-based powdered materials, glass/ceramic powdered materials and metal-based powdered materials and combinations thereof using electrostatic techniques to components exposed to low temperature operations, such as may be found in the front section of a gas turbine engine or to the exterior portions of an aircraft engine, and metal-containing glass ceramics, glass-ceramic materials, or materials that can be transformed into glass ceramic materials, when applied to components exposed to high temperature operations, such as may be found in the turbine and exhaust sections of a gas turbine engine or the flaps of an aircraft.
    Type: Application
    Filed: December 24, 2008
    Publication date: June 11, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew B. BUCZEK, Andrew J. SKOOG, Mark RECHTSTEINER, Jane Ann MURPHY
  • Publication number: 20080118719
    Abstract: In accordance with one embodiment of the invention, there is provided a method of coating a gas turbine engine component using a powder coating process. The method comprises providing a gas turbine engine component; and applying a powder coating to the gas turbine engine component using the powder coating process. The powder coating is applied in a dry form without an organic solvent. The method further comprises heating the applied powder coating to melt and fuse particles of the powder coating to the gas turbine engine component and cure the powder coating.
    Type: Application
    Filed: January 25, 2007
    Publication date: May 22, 2008
    Inventors: Andrew Jay Skoog, Matthew Buczek, Mark Rechtsteiner
  • Publication number: 20070104886
    Abstract: Electrostatic deposition of high performance powdered materials onto gas turbine surfaces. The process also includes post-deposition thermal staging of the deposited powder to provide a durable coating that will satisfy the demands of turbine engine operation. The process envisions application of organic-based powdered materials, glass/ceramic powdered materials and metal-based powdered materials and combinations thereof using electrostatic techniques to components exposed to low temperature operations, such as may be found in the front section of a gas turbine engine or to the exterior portions of an aircraft engine, and metal-containing glass ceramics, glass-ceramic materials, or materials that can be transformed into glass ceramic materials, when applied to components exposed to high temperature operations, such as may be found in the turbine and exhaust sections of a gas turbine engine or the flaps of an aircraft.
    Type: Application
    Filed: November 10, 2005
    Publication date: May 10, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Buczek, Andrew Skoog, Mark Rechtsteiner, Jane Murphy
  • Publication number: 20050202270
    Abstract: In accordance with one embodiment of the invention, there is provided a method of coating a gas turbine engine component using a powder coating process. The method comprises providing a gas turbine engine component; and applying a powder coating to the gas turbine engine component using the powder coating process. The powder coating is applied in a dry form without an organic solvent. The method further comprises heating the applied powder coating to melt and fuse particles of the powder coating to the gas turbine engine component and cure the powder coating.
    Type: Application
    Filed: March 10, 2004
    Publication date: September 15, 2005
    Inventors: Andrew Skoog, Matthew Buczek, Mark Rechtsteiner