Patents by Inventor Mark Rikel

Mark Rikel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8946126
    Abstract: A precursor material for the preparation of superconductors based on Bi2Sr2Ca1Cu2O8+? wherein the precursor material which is as close to equilibrium state as possible, i.e., has less than 5% in average 2201 intergrowths in the 2212 phase; in particular, the present invention relates to a precursor material, which is converted to the final conductor by partial melt processing, as well as to a process for the production of the precursor material and the use of the precursor material for preparing superconductors based on Bi2Sr2Ca1Cu2O8+?.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: February 3, 2015
    Assignee: Nexans
    Inventors: Joachim Bock, Jurgen Ehrenberg, Mark Rikel
  • Patent number: 8798696
    Abstract: A multilayer superconducting wire 7 with essentially round cross sectional area where the outer surface of the round wire is provided with a high temperature superconductor layer 3 and where at least the high temperature superconductor layer 3 is fabricated as a spiral running along the length of the superconductor wire 7 in parallel lanes 15.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: August 5, 2014
    Assignee: Nexans
    Inventors: Florian Steinmeyer, Mark Rikel, Jürgen Ehrenberg, Steffen Elschner
  • Patent number: 8642511
    Abstract: Method of depositing a layer of oxide of at least one metal element on a curved surface of a textured metal substrate, said method comprising the following steps: (1) a layer of a precursor of at least one oxide of a metal is deposited using an organic solution of at least one precursor of said metal, this solution preferably having a viscosity, measured at the temperature of the method, of between 1 mPa s and 20 mPa s, and even more preferentially between 2 mPa s and 10 mPa s. (2) said layer of oxide precursor is left to dry, (3) heat treatment is carried out in order to pyrolyse said oxide precursor and to form the oxide, at least part of said heat treatment being carried out under a flow of reducing gas, said reducing gas preferably having a flow rate greater than 0.005 cm/s, preferentially between 0.012 cm/s and 0.1 cm/s, and even more preferentially between 0.04 cm/s and 0.08 cm/s.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 4, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Philippe Odier, Stéphanie Morlens, Cyril Millon, Sarah Petit, Tristan Caroff, Carmen Jimenez, Jean-Louis Soubeyroux, Arnaud Allais, Mark Rikel
  • Patent number: 8633138
    Abstract: Method of depositing a buffer layer of epitaxial metal oxide on a functionalised surface of a textured metal substrate, said method comprising the following steps: (1) a layer is deposited of a precursor of an oxide of the type A2?xB2+xO7 where A represents a metal of valency 3 or a mixture of several of these metals, and B a metal of valency 4, and x is a number between ?0.1 and +0.1, from a solution of carboxylates of said metals A and B, (2) said layer of oxide precursor is left to dry, (3) heat treatment is carried out in order to pyrolyse said oxide precursor and to form the oxide, at least part of said heat treatment being carried out under a flow of reducing gas.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 21, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Philippe Odier, Stéphanie Morlens, Cyril Millon, Tristan Caroff, Carmen Jimenez, Jean-Louis Soubeyroux, Arnaud Allais, Mark Rikel
  • Patent number: 8465793
    Abstract: A process for preparing a shaped substrate suitable in the production of coated conductors which process allows the deformation of a textured substrate onto which a textured buffer layer has been already grown.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: June 18, 2013
    Assignee: Nexans
    Inventors: Jürgen Ehrenberg, Mark Rikel
  • Publication number: 20120028810
    Abstract: Method of depositing a layer of oxide of at least one metal element on a curved surface of a textured metal substrate, said method comprising the following steps: (1) a layer of a precursor of at least one oxide of a metal is deposited using an organic solution of at least one precursor of said metal, this solution preferably having a viscosity, measured at the temperature of the method, of between 1 mPa s and 20 mPa s, and even more preferentially between 2 mPa s and 10 mPa s. (2) said layer of oxide precursor is left to dry, (3) heat treatment is carried out in order to pyrolyse said oxide precursor and to form the oxide, at least part of said heat treatment being carried out under a flow of reducing gas, said reducing gas preferably having a flow rate greater than 0.005 cm/s, preferentially between 0.012 cm/s and 0.1 cm/s, and even more preferentially between 0.04 cm/s and 0.08 cm/s.
    Type: Application
    Filed: December 18, 2009
    Publication date: February 2, 2012
    Inventors: Philippe Odier, Stéphanie Morlens, Cyril Millon, Sarah Petil, Tristan Caroff, Carmen Jimenez, Jean-Louis Soubeyroux, Arnaud Allais, Mark Rikel
  • Publication number: 20110312500
    Abstract: Method of depositing a buffer layer of epitaxial metal oxide on a functionalised surface of a textured metal substrate, said method comprising the following steps: (1) a layer is deposited of a precursor of an oxide of the type A2?xB2+xO7 where A represents a metal of valency 3 or a mixture of several of these metals, and B a metal of valency 4, and x is a number between ?0.1 and +0.1, from a solution of carboxylates of said metals A and B, (2) said layer of oxide precursor is left to dry, (3) heat treatment is carried out in order to pyrolyse said oxide precursor and to form the oxide, at least part of said heat treatment being carried out under a flow of reducing gas.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 22, 2011
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Philippe Odier, Stéphanie Morlens, Cyril Millon, Tristan Caroff, Carmen Jimenez, Jean-Louis Soubetroux, Arnaud Allais, Mark Rikel
  • Publication number: 20100197505
    Abstract: A multilayer superconducting wire 7 with essentially round cross sectional area where the outer surface of the round wire is provided with a high temperature superconductor layer 3 and where at least the high temperature superconductor layer 3 is fabricated as a spiral running along the length of the superconductor wire 7 in parallel lanes 15.
    Type: Application
    Filed: May 27, 2009
    Publication date: August 5, 2010
    Inventors: Florian Steinmeyer, Mark Rikel, Jürgen Ehrenberg, Steffen Elschner
  • Publication number: 20100143660
    Abstract: A process for preparing a shaped substrate suitable in the production of coated conductors which process allows the deformation of a textured substrate onto which a textured buffer layer has been already grown.
    Type: Application
    Filed: June 3, 2009
    Publication date: June 10, 2010
    Inventors: Jurgen Ehrenberg, Mark Rikel
  • Publication number: 20080039330
    Abstract: Coated conductors have a substrate, a high temperature superconductor layer and at least one or more buffer layers, wherein at least one of the buffer layers is a template for biaxially orienting the high temperature superconductor layer wherein the template is composed of a polycrystalline film consisting of a non-stoichiometric material having the nominal chemical formula A2?xB2+xO7 with B being at least one selected from Zr, Hf, Sn, Pb and Ti; A being at least one selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Y, Tm, Yb and Lu; and x?0; and wherein the substrate is textured.
    Type: Application
    Filed: May 1, 2007
    Publication date: February 14, 2008
    Inventors: Andre Wolf, Dirk Isfort, Mark Rikel
  • Publication number: 20060154828
    Abstract: A precursor material for the preparation of superconductors based on Bi2Sr2Ca1Cu2O8+? wherein the precursor material which is as close to equilibrium state as possible, i.e., has less than 5% in average 2201 intergrowths in the 2212 phase; in particular, the present invention relates to a precursor material, which is converted to the final conductor by partial melt processing, as well as to a process for the production of the precursor material and the use of the precursor material for preparing superconductors based on Bi2Sr2Ca1Cu2O8+?.
    Type: Application
    Filed: November 21, 2005
    Publication date: July 13, 2006
    Inventors: Joachim Bock, Jurgen Ehrenberg, Mark Rikel