Patents by Inventor Mark Robert Schneider

Mark Robert Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953349
    Abstract: A magnetic tracking system is configured to determine an object pose of a tracked object in an environment of the magnetic tracking system. The tracking system includes a transmitter assembly that includes a transmitting coil configured to generate a magnetic signal indicative of an object pose of a tracked object with respect to the transmitter assembly and a marker that visually identifies a pose of the transmitter assembly with respect to a camera device. The camera device captures at least one image of the transmitter assembly. A computing device determines, based on the image, a pose for the transmitter assemblies in the image. Based on the magnetic signal and the pose associated with the transmitter assembly, the computing device determines the object pose of the tracked object in the environment.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: April 9, 2024
    Assignee: Northern Digital Inc.
    Inventor: Mark Robert Schneider
  • Patent number: 11900778
    Abstract: A method for improving safety and property protection in schools comprising fixed and mobile safety and security devices, networked together. A software App provides real-time communication among various devices. The network integrates disparate security devices into a unified system to expand coordination and communication among public safety personnel. The system automatically triggers alarms, cell phone notifications, and warnings, as well as defensive measures, when its sensors or safety devices detect or report threats to public safety and property. Each device in the system is pre-programmed to respond independently while simultaneously sharing its findings with all other devices and security personnel in the network. Deployment of these disparate devices gives security personnel heightened awareness, real-time status of secured and unsecured building entrances, around-the-clock visualization, and faster response times in both indoor and outdoor emergencies.
    Type: Grant
    Filed: March 29, 2023
    Date of Patent: February 13, 2024
    Inventors: John Thomas Scully, Jr., Lee Bryan, Mark Robert Schneider, Patricia Lynn Scott, Vladimir Kogan
  • Publication number: 20230218350
    Abstract: A device comprising includes an insertable structure usable in a surgical theater, a fiber optic line extending through the structure, wherein a computer system is configured to determine a shape of the fiber optic line extending through the structure, and one or more electromagnetic sensors wrapped at least in part around one or more portions of the fiber optic line, wherein the computer system is configured to determine a position and orientation of the one or more electromagnetic sensors, wherein the computer system is configured to determine a shape and a position of the structure based on the determined shape of the fiber optic line extending through the structure and the determined position and orientation of the one or more electromagnetic sensors.
    Type: Application
    Filed: January 6, 2023
    Publication date: July 13, 2023
    Inventor: Mark Robert Schneider
  • Patent number: 11604057
    Abstract: A calibration device comprising: a plurality of magnetic sensors positioned at the calibration device, the plurality of magnetic sensors defining a space; a controller configured to be positioned in the space defined by the plurality of magnetic sensors, wherein the controller includes a magnetic transmitter; and one or more processors configured to: cause the magnetic transmitter to generate magnetic fields; receive signals from the plurality of magnetic sensors that are based on characteristics of the magnetic fields received at the plurality of magnetic sensors; calculate, based on the signals received from the plurality of magnetic sensors, positions and orientations of the plurality of magnetic sensors relative to a position and orientation of the magnetic transmitter; and determine whether the calculated positions and orientations of the plurality of magnetic sensors are within one or more threshold limits of known positions and orientations of the plurality of magnetic sensors.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: March 14, 2023
    Assignee: Northern Digital Inc.
    Inventors: Mark Robert Schneider, Charles Robertson, Joseph Bruce Durfee
  • Patent number: 11493318
    Abstract: A calibration device comprising: a plurality of magnetic sensors positioned at the calibration device, the plurality of magnetic sensors defining a space; a controller configured to be positioned in the space defined by the plurality of magnetic sensors, wherein the controller includes a magnetic transmitter; and one or more processors configured to: cause the magnetic transmitter to generate magnetic fields; receive signals from the plurality of magnetic sensors that are based on characteristics of the magnetic fields received at the plurality of magnetic sensors; calculate, based on the signals received from the plurality of magnetic sensors, positions and orientations of the plurality of magnetic sensors relative to a position and orientation of the magnetic transmitter; and determine whether the calculated positions and orientations of the plurality of magnetic sensors are within one or more threshold limits of known positions and orientations of the plurality of magnetic sensors.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: November 8, 2022
    Assignee: Northern Digital, Inc.
    Inventors: Mark Robert Schneider, Charles Robertson, Joseph Bruce Durfee
  • Patent number: 11360161
    Abstract: A system comprising: a magnetic transmitter configured to generate magnetic fields; a magnetic sensor configured to generate signals based on characteristics of the magnetic fields received at the magnetic sensor; and one or more computer systems configured to: receive the signals from the magnetic sensor; determine, based on the signals received from the magnetic sensor, an electromagnetic (EM) pose of the magnetic sensor relative to the magnetic transmitter; determine one or both of: i) an inertial pose of the magnetic sensor relative to the magnetic transmitter based on inertial data associated with the magnetic transmitter and the magnetic sensor, or ii) an optical pose of the magnetic sensor relative to the magnetic transmitter based on optical data associated with the magnetic transmitter and the magnetic sensor; determine an estimated pose of the magnetic sensor relative to the magnetic transmitter based on the EM pose and the one or both of the inertial pose or the optical pose; determine distorted ma
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: June 14, 2022
    Assignee: Northern Digital Inc.
    Inventors: Mark Robert Schneider, Kenji Fujioka
  • Patent number: 11340311
    Abstract: A method includes receiving, at a magnetic sensor, a series of transmitter signals that are detected as a series of signals corresponding to different locations and/or orientations of a magnetic transmitter emitting a magnetic field, calculating, receiving, at the magnetic sensor, a measurement transmitter signal that is detected as a signal corresponding to a magnetic field provided by the magnetic transmitter, and calculating, based at least on the received measurement sensor signal and the calibration matrix, one or both of an orientation matrix indicative of an orientation of the magnetic sensor relative to the magnetic transmitter and a positional matrix indicative of a position of the magnetic sensor relative to the magnetic transmitter, wherein the series of transmitter signals are transmitted from the same physical location relative to the magnetic sensor.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: May 24, 2022
    Assignee: Northern Digital Inc.
    Inventor: Mark Robert Schneider
  • Publication number: 20210386485
    Abstract: A magnetic tracking device is configured to track an object in an environment by receiving a measurement of the non-magnetic signal and a corresponding measurement of the magnetic signal for a location of the magnetic tracking device in the environment. The magnetic tracking device estimates, based on the measurement of the non-magnetic signal, a non-magnetic pose of the magnetic tracking device in the environment for the location. The device estimates, based on the measurement of the magnetic signal, a magnetic pose of the magnetic tracking device in the environment for the location. The device determines a difference between the magnetic pose estimate and the non-magnetic pose estimate for the location. The device determines a magnetic distortion correction value for the location based on the difference. The magnetic tracking device generates a distortion correction model including the distortion value and outputs a representation of the distortion correction model.
    Type: Application
    Filed: June 11, 2021
    Publication date: December 16, 2021
    Inventors: Mark Robert Schneider, Alec Duling, Syamprasad Karyattuparambil Rajagopalan
  • Publication number: 20210123714
    Abstract: A calibration device comprising: a plurality of magnetic sensors positioned at the calibration device, the plurality of magnetic sensors defining a space; a controller configured to be positioned in the space defined by the plurality of magnetic sensors, wherein the controller includes a magnetic transmitter; and one or more processors configured to: cause the magnetic transmitter to generate magnetic fields; receive signals from the plurality of magnetic sensors that are based on characteristics of the magnetic fields received at the plurality of magnetic sensors; calculate, based on the signals received from the plurality of magnetic sensors, positions and orientations of the plurality of magnetic sensors relative to a position and orientation of the magnetic transmitter; and determine whether the calculated positions and orientations of the plurality of magnetic sensors are within one or more threshold limits of known positions and orientations of the plurality of magnetic sensors.
    Type: Application
    Filed: December 31, 2020
    Publication date: April 29, 2021
    Inventors: Mark Robert Schneider, Charles Robertson, Joseph Bruce Durfee
  • Publication number: 20210096001
    Abstract: A magnetic tracking system is configured to determine an object pose of a tracked object in an environment of the magnetic tracking system. The tracking system includes a transmitter assembly that includes a transmitting coil configured to generate a magnetic signal indicative of an object pose of a tracked object with respect to the transmitter assembly and a marker that visually identifies a pose of the transmitter assembly with respect to a camera device. The camera device captures at least one image of the transmitter assembly. A computing device determines, based on the image, a pose for the transmitter assemblies in the image. Based on the magnetic signal and the pose associated with the transmitter assembly, the computing device determines the object pose of the tracked object in the environment.
    Type: Application
    Filed: September 24, 2020
    Publication date: April 1, 2021
    Inventor: Mark Robert Schneider
  • Patent number: 10948278
    Abstract: A calibration system comprising: a Helmholtz device comprising thee pairs of coils defining an inner volume, wherein each of the three pairs of coils is configured to generate a magnetic field that is uniform throughout the inner volume; a mount configured to accept a device that includes a magnetic sensor, wherein at least a portion of the mount is positioned within the inner volume such that the magnetic sensor is positioned at or near a center of the inner volume when the device is positioned on the mount; and a computer system configured to communicate with the Helmholtz device and the magnetic sensor, wherein the computer system is configured to: provide instructions to cause each of the three pairs of coils to generate a magnetic field; receive signals from the magnetic sensor that are based on characteristics of the magnetic fields received at the magnetic sensor; measure, based on the signals received from the magnetic sensor, one or more characteristics of the magnetic sensor; and determine, using a
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 16, 2021
    Assignee: Ascension Technology Corporation
    Inventors: Mark Robert Schneider, Charles Robertson
  • Patent number: 10883812
    Abstract: A calibration device comprising: a plurality of magnetic sensors positioned at the calibration device, the plurality of magnetic sensors defining a space; a controller configured to be positioned in the space defined by the plurality of magnetic sensors, wherein the controller includes a magnetic transmitter; and one or more processors configured to: cause the magnetic transmitter to generate magnetic fields; receive signals from the plurality of magnetic sensors that are based on characteristics of the magnetic fields received at the plurality of magnetic sensors; calculate, based on the signals received from the plurality of magnetic sensors, positions and orientations of the plurality of magnetic sensors relative to a position and orientation of the magnetic transmitter; and determine whether the calculated positions and orientations of the plurality of magnetic sensors are within one or more threshold limits of known positions and orientations of the plurality of magnetic sensors.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: January 5, 2021
    Assignee: Ascension Technology Corporation
    Inventors: Mark Robert Schneider, Charles Robertson, Joseph Bruce Durfee
  • Publication number: 20200333404
    Abstract: A method includes receiving, at a magnetic sensor, a series of transmitter signals that are detected as a series of signals corresponding to different locations and/or orientations of a magnetic transmitter emitting a magnetic field, calculating, receiving, at the magnetic sensor, a measurement transmitter signal that is detected as a signal corresponding to a magnetic field provided by the magnetic transmitter, and calculating, based at least on the received measurement sensor signal and the calibration matrix, one or both of an orientation matrix indicative of an orientation of the magnetic sensor relative to the magnetic transmitter and a positional matrix indicative of a position of the magnetic sensor relative to the magnetic transmitter, wherein the series of transmitter signals are transmitted from the same physical location relative to the magnetic sensor.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 22, 2020
    Inventor: Mark Robert Schneider
  • Patent number: 10779892
    Abstract: A system comprising: a sensor configured to be introduced into a clearance hole of a surgical implant, wherein the sensor is configured to be introduced in proximity to a generated magnetic field and cause distortion of the magnetic field; and one or more field measuring coils configured to: measure a characteristic of the magnetic field when the sensor is in proximity to the magnetic field; and provide, to a computing device, a signal representative of the measured characteristic of the magnetic field, wherein the computing device is configured to determine one or both of a position and an orientation of the sensor and the clearance hole based on the measured characteristic of the magnetic field.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: September 22, 2020
    Assignee: Northern Digital Inc.
    Inventors: Nikolai Mikuszeit, Christian Schilling, Olaf Zerres, Georg Brunner, Stefan R. Kirsch, Westley D. Ashe, Mark Robert Schneider, Vladimir F. Kogan
  • Publication number: 20190242952
    Abstract: A system comprising: a magnetic transmitter configured to generate magnetic fields; a magnetic sensor configured to generate signals based on characteristics of the magnetic fields received at the magnetic sensor; and one or more computer systems configured to: receive the signals from the magnetic sensor; determine, based on the signals received from the magnetic sensor, an electromagnetic (EM) pose of the magnetic sensor relative to the magnetic transmitter; determine one or both of: i) an inertial pose of the magnetic sensor relative to the magnetic transmitter based on inertial data associated with the magnetic transmitter and the magnetic sensor, or ii) an optical pose of the magnetic sensor relative to the magnetic transmitter based on optical data associated with the magnetic transmitter and the magnetic sensor; determine an estimated pose of the magnetic sensor relative to the magnetic transmitter based on the EM pose and the one or both of the inertial pose or the optical pose; determine distorted ma
    Type: Application
    Filed: February 8, 2019
    Publication date: August 8, 2019
    Inventors: Mark Robert Schneider, Kenji Fujioka
  • Publication number: 20190226825
    Abstract: A calibration device comprising: a plurality of magnetic sensors positioned at the calibration device, the plurality of magnetic sensors defining a space; a controller configured to be positioned in the space defined by the plurality of magnetic sensors, wherein the controller includes a magnetic transmitter; and one or more processors configured to: cause the magnetic transmitter to generate magnetic fields; receive signals from the plurality of magnetic sensors that are based on characteristics of the magnetic fields received at the plurality of magnetic sensors; calculate, based on the signals received from the plurality of magnetic sensors, positions and orientations of the plurality of magnetic sensors relative to a position and orientation of the magnetic transmitter; and determine whether the calculated positions and orientations of the plurality of magnetic sensors are within one or more threshold limits of known positions and orientations of the plurality of magnetic sensors.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 25, 2019
    Inventors: Mark Robert Schneider, Charles Robertson, Joseph Bruce Durfee
  • Publication number: 20190226826
    Abstract: A calibration system comprising: a Helmholtz device comprising thee pairs of coils defining an inner volume, wherein each of the three pairs of coils is configured to generate a magnetic field that is uniform throughout the inner volume; a mount configured to accept a device that includes a magnetic sensor, wherein at least a portion of the mount is positioned within the inner volume such that the magnetic sensor is positioned at or near a center of the inner volume when the device is positioned on the mount; and a computer system configured to communicate with the Helmholtz device and the magnetic sensor, wherein the computer system is configured to: provide instructions to cause each of the three pairs of coils to generate a magnetic field; receive signals from the magnetic sensor that are based on characteristics of the magnetic fields received at the magnetic sensor; measure, based on the signals received from the magnetic sensor, one or more characteristics of the magnetic sensor; and determine, using a
    Type: Application
    Filed: January 18, 2019
    Publication date: July 25, 2019
    Inventors: Mark Robert Schneider, Charles Robertson
  • Publication number: 20190046273
    Abstract: A system comprising: a sensor configured to be introduced into a clearance hole of a surgical implant, wherein the sensor is configured to be introduced in proximity to a generated magnetic field and cause distortion of the magnetic field; and one or more field measuring coils configured to: measure a characteristic of the magnetic field when the sensor is in proximity to the magnetic field; and provide, to a computing device, a signal representative of the measured characteristic of the magnetic field, wherein the computing device is configured to determine one or both of a position and an orientation of the sensor and the clearance hole based on the measured characteristic of the magnetic field.
    Type: Application
    Filed: July 27, 2018
    Publication date: February 14, 2019
    Inventors: Nikolai Mikuszeit, Christian Schilling, Olaf Zerres, Georg Brunner, Stefan R. Kirsch, Westley D. Ashe, Mark Robert Schneider, Vladimir F. Kogan
  • Publication number: 20170128141
    Abstract: In one aspect, in general, a method includes receiving, at a computer system, data from an electromagnetic sensor, determining, at the computer system, based on the received data, a location of a tip of a guidewire inserted in a patient, and causing, by the computer system, an indication of the determined location of the tip of the guidewire to be displayed in an overlay image representing at least part of the guidewire.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 11, 2017
    Inventors: Mark Robert Schneider, Jack Thomas Scully
  • Publication number: 20150069892
    Abstract: An overhead or ceiling-mounted storage system is disclosed. The system includes two or more rails. A rail includes one or more lips that may support a bin. The bin includes substantially straight opposing walls topped with a rim or other structure that may contact the lip of a rail. The rails may support the bin when the rim is placed on the rails and the rails are attached to an overhead structure, such as a ceiling. The lips of the rails and the rims of the bins are configured such that the lips substantially maintain contact with the rims across each of their respective widths.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 12, 2015
    Inventor: MARK ROBERT SCHNEIDER