Patents by Inventor Mark Robert Visokay

Mark Robert Visokay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11710764
    Abstract: An integrated circuit (IC) including a semiconductor surface layer of a substrate including functional circuitry having circuit elements formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal capacitor (MIM) capacitor on the semiconductor surface layer for realizing at least one circuit function. The MIM capacitor includes a multilevel bottom capacitor plate having an upper top surface, a lower top surface, and sidewall surfaces that connect the upper and lower top surfaces (e.g., a bottom plate layer on a three-dimensional (3D) layer or the bottom capacitor plate being a 3D bottom capacitor plate). At least one capacitor dielectric layer is on the bottom capacitor plate. A top capacitor plate is on the capacitor dielectric layer, and there are contacts through a pre-metal dielectric layer to contact the top capacitor plate and the bottom capacitor plate.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: July 25, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Poornika Fernandes, Sagnik Dey, Luigi Colombo, Haowen Bu, Scott Robert Summerfelt, Mark Robert Visokay, John Paul Campbell
  • Patent number: 11004929
    Abstract: Various examples provide an electronic device that includes first and second resistor segments. Each of the resistor segments has a respective doped resistive region formed in a semiconductor substrate. The resistor segments are connected between first and second terminals. The first resistor segment is configured to conduct a current in a first direction, and the second resistor segment is configured to conduct the current in a second different direction. The directions may be orthogonal crystallographic directions of the semiconductor substrate.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: May 11, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, Erika Lynn Mazotti, Mark Robert Visokay, William David French, Ricky Alan Jackson, Wai Lee
  • Publication number: 20200119132
    Abstract: Various examples provide an electronic device that includes first and second resistor segments. Each of the resistor segments has a respective doped resistive region formed in a semiconductor substrate. The resistor segments are connected between first and second terminals. The first resistor segment is configured to conduct a current in a first direction, and the second resistor segment is configured to conduct the current in a second different direction. The directions may be orthogonal crystallographic directions of the semiconductor substrate.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 16, 2020
    Inventors: Dok Won Lee, Erika Lynn Mazotti, Mark Robert Visokay, William David French, Ricky Alan Jackson, Wai Lee
  • Publication number: 20200006471
    Abstract: An integrated circuit (IC) including a semiconductor surface layer of a substrate including functional circuitry having circuit elements formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal capacitor (MIM) capacitor on the semiconductor surface layer for realizing at least one circuit function. The MIM capacitor includes a multilevel bottom capacitor plate having an upper top surface, a lower top surface, and sidewall surfaces that connect the upper and lower top surfaces (e.g., a bottom plate layer on a three-dimensional (3D) layer or the bottom capacitor plate being a 3D bottom capacitor plate). At least one capacitor dielectric layer is on the bottom capacitor plate. A top capacitor plate is on the capacitor dielectric layer, and there are contacts through a pre-metal dielectric layer to contact the top capacitor plate and the bottom capacitor plate.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Inventors: POORNIKA FERNANDES, SAGNIK DEY, LUIGI COLOMBO, HAOWEN BU, SCOTT ROBERT SUMMERFELT, MARK ROBERT VISOKAY, JOHN PAUL CAMPBELL
  • Patent number: 10249621
    Abstract: A method of limiting plasma charging damage on ICs. A die includes gate stacks on active areas defined by a field dielectric. A pre-metal dielectric (PMD) layer is over the gate electrode. A contact masking material pattern is defined on the PMD layer including first contact defining features for forming active contacts and second contact defining features for forming dummy contacts (DC's) including over active areas and gate electrodes. Contacts are etched through the PMD layer using the contact masking material pattern to form active contacts and DC's. A patterned metal 1 (M1) layer is formed including first M1 portions over the active contacts and dummy M1 portions over the DC's. Metallization processing follows including forming interconnects so that the active contacts are connected to MOS transistors on the IC, and the DC's are not electrically connected to the MOS transistors.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: April 2, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Robert Visokay, Tae S. Kim, Mahalingam Nandakumar, Eric D. Rullan, Gregory B. Shinn
  • Publication number: 20180175023
    Abstract: A method of limiting plasma charging damage on ICs. A die includes gate stacks on active areas defined by a field dielectric. A pre-metal dielectric (PMD) layer is over the gate electrode. A contact masking material pattern is defined on the PMD layer including first contact defining features for forming active contacts and second contact defining features for forming dummy contacts (DC's) including over active areas and gate electrodes. Contacts are etched through the PMD layer using the contact masking material pattern to form active contacts and DC's. A patterned metal 1 (M1) layer is formed including first M1 portions over the active contacts and dummy M1 portions over the DC's. Metallization processing follows including forming interconnects so that the active contacts are connected to MOS transistors on the IC, and the DC's are not electrically connected to the MOS transistors.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 21, 2018
    Inventors: MARK ROBERT VISOKAY, TAE S. KIM, MAHALINGAM NANDAKUMAR, ERIC D. RULLAN, GREGORY B. SHINN
  • Publication number: 20150221516
    Abstract: A sputtering target for a conductive oxide, such as SrRuO3, to be used for the sputter deposition of a conductive film that is to be in contact with a ferroelectric material in an integrated circuit. The sputtering target is formed by the sintering of a powder mixture of the conductive oxide with a sintering agent of an oxide of one of the constituents of the ferroelectric material. For the example of lead-zirconium-titanate (PZT) as the ferroelectric material, the sintering agent is one or more of a lead oxide, a zirconium oxide, and a titanium oxide. The resulting sputtering target is of higher density and lower porosity, resulting in an improved sputter deposited film that does not include an atomic species beyond those of the ferroelectric material deposited adjacent to that film.
    Type: Application
    Filed: April 9, 2015
    Publication date: August 6, 2015
    Inventors: Mark Robert Visokay, Scott Robert Summerfelt
  • Patent number: 8822236
    Abstract: An ammonia-free method of depositing silicon nitride by way of plasma-enhanced chemical vapor deposition (PECVD). Source gases of silane (SiH4) and nitrogen (N2) are provided to a parallel-plate plasma reactor, in which energy is capacitively coupled to the plasma, and in which the wafer being processed has been placed at a support electrode. Low-frequency RF energy (e.g., 360 kHz) is applied to the support electrode; high-frequency RF energy (e.g., 13.56 MHz) is optionally provided to the parallel electrode. Process temperature is above 350° C., at a pressure of about 2.5 torr. Any hydrogen present in the resulting silicon nitride film is bound by N—H bonds rather than Si—H bonds, and is thus more strongly bound to the film. The silicon nitride can serve as passivation for ferroelectric material that may degrade electrically if contaminated by hydrogen.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: September 2, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Bo-Yang Lin, Yen Lee, Haowen Bu, Mark Robert Visokay
  • Publication number: 20140147940
    Abstract: A sputtering target for a conductive oxide, such as SrRuO3, to be used for the sputter deposition of a conductive film that is to be in contact with a ferroelectric material in an integrated circuit. The sputtering target is formed by the sintering of a powder mixture of the conductive oxide with a sintering agent of an oxide of one of the constituents of the ferroelectric material. For the example of lead-zirconium-titanate (PZT) as the ferroelectric material, the sintering agent is one or more of a lead oxide, a zirconium oxide, and a titanium oxide. The resulting sputtering target is of higher density and lower porosity, resulting in an improved sputter deposited film that does not include an atomic species beyond those of the ferroelectric material deposited adjacent to that film.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 29, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Mark Robert Visokay, Scott Robert Summerfelt
  • Publication number: 20130309783
    Abstract: An ammonia-free method of depositing silicon nitride by way of plasma-enhanced chemical vapor deposition (PECVD). Source gases of silane (SiH4) and nitrogen (N2) are provided to a parallel-plate plasma reactor, in which energy is capacitively coupled to the plasma, and in which the wafer being processed has been placed at a support electrode. Low-frequency RF energy (e.g., 360 kHz) is applied to the support electrode; high-frequency RF energy (e.g., 13.56 MHz) is optionally provided to the parallel electrode. Process temperature is above 350° C., at a pressure of about 2.5 torr. Any hydrogen present in the resulting silicon nitride film is bound by N—H bonds rather than Si—H bonds, and is thus more strongly bound to the film. The silicon nitride can serve as passivation for ferroelectric material that may degrade electrically if contaminated by hydrogen.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Inventors: Bo-Yang Lin, Yen Lee, Haowen Bu, Mark Robert Visokay
  • Publication number: 20130056811
    Abstract: An ammonia-free method of depositing silicon nitride by way of plasma-enhanced chemical vapor deposition (PECVD). Source gases of silane (SiH4) and nitrogen (N2) are provided to a parallel-plate plasma reactor, in which energy is capacitively coupled to the plasma, and in which the wafer being processed has been placed at a support electrode. Low-frequency RF energy (e.g., 360 kHz) is applied to the support electrode; high-frequency RF energy (e.g., 13.56 MHz) is optionally provided to the parallel electrode. Process temperature is above 350° C., at a pressure of about 2.5 torr. Any hydrogen present in the resulting silicon nitride film is bound by N—H bonds rather than Si—H bonds, and is thus more strongly bound to the film. The silicon nitride can serve as passivation for ferroelectric material that may degrade electrically if contaminated by hydrogen.
    Type: Application
    Filed: March 28, 2012
    Publication date: March 7, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bo-Yang Lin, Yen Lee, Haowen Bu, Mark Robert Visokay
  • Patent number: 8273645
    Abstract: A method of forming fully silicided (FUSI) gates in MOS transistors which is compatible with wet etch processes used in source/drain silicide formation is disclosed. The gate silicide formation step produces a top layer of metal rich silicide which is resistant to removal in wet etch processes. A blocking layer over active areas prevents source/drain silicide formation during gate silicide formation. Wet etches during removal of the blocking layer and source/drain metal strip do not remove the metal rich gate silicide layer. Anneal of the gate silicide to produce a FUSI gate with a desired stoichiometry is delayed until after formation of the source/drain silicide. The disclosed method is compatible with nickel and nickel-platinum silicide processes.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: September 25, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Mark Robert Visokay, Freidoon Mehrad, Richard L. Guldi, Yaw Samuel Obeng
  • Publication number: 20110097884
    Abstract: A method of forming fully silicided (FUSI) gates in MOS transistors which is compatible with wet etch processes used in source/drain silicide formation is disclosed. The gate silicide formation step produces a top layer of metal rich silicide which is resistant to removal in wet etch processes. A blocking layer over active areas prevents source/drain silicide formation during gate silicide formation. Wet etches during removal of the blocking layer and source/drain metal strip do not remove the metal rich gate silicide layer. Anneal of the gate silicide to produce a FUSI gate with a desired stoichiometry is delayed until after formation of the source/drain silicide. The disclosed method is compatible with nickel and nickel-platinum silicide processes.
    Type: Application
    Filed: August 7, 2009
    Publication date: April 28, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Robert VISOKAY, Freidoon MEHRAD, Richard L. GULDI, Yaw Samuel OBENG
  • Publication number: 20100323486
    Abstract: Example embodiments provide triple-gate semiconductor devices isolated by reverse shallow trench isolation (STI) structures and methods for their manufacture. In an example process, stacked layers including a form layer over a dielectric layer can be formed over a semiconductor substrate. One or more trenches can be formed by etching through the stacked layers. The one or more trenches can be filled by an active area material to form one or more active areas, which can be isolated by remaining portions of the dielectric layer. Bodies of the active area material can be exposed by removing the form layer. One or more triple-gate devices can then be formed on the exposed active area material. The example triple-gate semiconductor devices can control the dimensions for the active areas and provide less isolation spacing between the active areas, which optimizes manufacturing efficiency and device integration quality.
    Type: Application
    Filed: January 29, 2010
    Publication date: December 23, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Joseph Chambers, Mark Robert Visokay
  • Patent number: 7842567
    Abstract: Concurrently forming different metal gate transistors having respective work functions is disclosed. In one example, a metal carbide, which has a relatively low work function, is formed over a semiconductor substrate. Oxygen and/or nitrogen are then added to the metal carbide in a second region to establish a second work function in the second region, where the metal carbide itself establishes a first work function in a first region. One or more first metal gate transistor types are then formed in the first region and one or more second metal gate transistor types are formed in the second region.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: November 30, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Luigi Colombo, Mark Robert Visokay
  • Patent number: 7678675
    Abstract: Exemplary embodiments provide triple-gate semiconductor devices isolated by reverse STI structures and methodologies for their manufacture. In an exemplary process, stacked layers including a form layer over a dielectric layer can be formed over a semiconductor substrate. One or more trenches can be formed by etching through the stacked layers. The one or more trenches can be filled by an active area material to form one or more active areas, which can be isolated by remaining portions of the dielectric layer. Bodies of the active area material can be exposed by removing the form layer. One or more triple-gate devices can then be formed on the exposed active area material. The exemplary triple-gate semiconductor devices can control the dimensions for the active areas and provide less isolation spacing between the active areas, which optimizes manufacturing efficiency and device integration quality.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: March 16, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Robert Visokay
  • Patent number: 7642146
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An I/O dielectric layer is formed in core and I/O regions of a semiconductor device (506). The I/O dielectric layer is removed (508) from the core region of the device. A core dielectric layer is formed in the core region (510). A barrier layer is deposited and patterned to expose the NMOS devices of the core region (512). The core dielectric layer is removed from the core NMOS devices (514). A high-k dielectric layer is formed (514) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions/devices of the core region and the NMOS and PMOS regions/devices of the I/O region.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: January 5, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Robert Visokay, Luigi Colombo
  • Patent number: 7612422
    Abstract: Exemplary embodiments provide structures for dual work function metal gate electrodes. The work function value of a metal gate electrode can be increased and/or decreased by disposing various electronegative species and/or electropositive species at the metal/dielectric interface to control interface dipoles. In an exemplary embodiment, various electronegative species can be disposed at the metal/dielectric interface to increase the work function value of the metal, which can be used for a PMOS metal gate electrode in a dual work function gated device. Various electropositive species can be disposed at the metal/dielectric interface to decrease the work function value of the metal, which can be used for an NMOS metal gate electrode in the dual work function gated device.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Luigi Colombo, Mark Robert Visokay
  • Patent number: 7601577
    Abstract: Forming metal gate transistors that have different work functions is disclosed. In one example, a first metal, which is a ‘mid gap’ metal, is manipulated in first and second regions by second and third metals, respectively, to move the work function of the first metal in opposite directions in the different regions. The resulting work functions in the different regions correspond to that of different types of the transistors that are to be formed.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Robert Visokay, Luigi Colombo, Antonio Luis Pacheco Rotondaro
  • Publication number: 20090068828
    Abstract: Concurrently forming different metal gate transistors having respective work functions is disclosed. In one example, a metal carbide, which has a relatively low work function, is formed over a semiconductor substrate. Oxygen and/or nitrogen are then added to the metal carbide in a second region to establish a second work function in the second region, where the metal carbide itself establishes a first work function in a first region. One or more first metal gate transistor types are then formed in the first region and one or more second metal gate transistor types are formed in the second region.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 12, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Joseph Chambers, Luigi Colombo, Mark Robert Visokay