Patents by Inventor Mark S. Peercy
Mark S. Peercy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8610729Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: GrantFiled: June 12, 2012Date of Patent: December 17, 2013Assignee: Graphic Properties Holdings, Inc.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Patent number: 8296763Abstract: A system and method for providing Personal Cloud computing and for hosting applications and/or content may employ a network attached storage device on which virtual machine monitors (T-cups) and logical devices (Ts) are instantiated in memory. Each T may include hosted content, application modules, a server module configured to host the modules and/or content, and an interface module configured to provide access to the modules and/or content in response to detecting an authorized key. Detecting an authorized key may include communicating with a name server to determine if a T instantiated on a storage device coupled to the system is associated with a device identifier on a list of device identifiers authorized to access the module(s). The storage device may be a computer, camera, frame, phone, audio/video player, or portable storage device. The name server may be configured to authenticate Ts, define T ownership, and/or establish friend-to-friend networks between Ts.Type: GrantFiled: May 29, 2009Date of Patent: October 23, 2012Assignee: Adobe Systems IncorporatedInventors: Mark S. Peercy, Danny D. Loh
-
Publication number: 20120262470Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 18, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Patent number: 8289334Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: GrantFiled: February 16, 2012Date of Patent: October 16, 2012Assignee: Graphics Properties Holdings, Inc.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher Migdal, Danny D. Loh
-
Publication number: 20120256942Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 11, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20120256933Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 11, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20120256932Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 11, 2012Applicant: Graphics Properties Holdings, Inc.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20120249561Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 4, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20120249548Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 4, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20120249566Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 4, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20120249562Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: June 12, 2012Publication date: October 4, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20120139931Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: February 16, 2012Publication date: June 7, 2012Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Patent number: 8144158Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: GrantFiled: January 11, 2011Date of Patent: March 27, 2012Assignee: Graphics Properties Holdings, Inc.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20110169842Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: January 11, 2011Publication date: July 14, 2011Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20100079471Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: December 7, 2009Publication date: April 1, 2010Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Patent number: 7518615Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: GrantFiled: July 12, 2000Date of Patent: April 14, 2009Assignee: Silicon Graphics, Inc.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Publication number: 20080284786Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.Type: ApplicationFiled: July 7, 2008Publication date: November 20, 2008Applicant: SILICON GRAPHICS, INC.Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
-
Patent number: 7116333Abstract: One aspect of the invention is a method for data retrieval. The method includes the step of rendering geometry from a selected perspective (140) to produce a plurality of data values (130, T?AB). The method also includes the steps of storing at least a subset of the plurality of data values (130, T?AB) in a memory (40, 80) and computing a plurality of texture coordinates (a?–d?) of the geometry from a projective transformation corresponding to the selected perspective (140). The method also includes the step of retrieving at least one of the stored data values (TAB) that correspond to the texture coordinates (a?–d?) from the memory (40, 80).Type: GrantFiled: May 12, 2000Date of Patent: October 3, 2006Assignee: Microsoft CorporationInventor: Mark S. Peercy
-
Patent number: 6943798Abstract: A method and system are provided for executing SIMD instructions using graphics technology. A SIMD instruction is received and interpreted. The specific data needed for the SIMD instruction is identified. Texel addresses where the specific data are stored are recalled and frame buffer pixels to be used to support the SIMD instruction are selected. In an alternative embodiment, these texel addresses are stored in frame buffer pixel channels such that the pixel containing a particular address will be the pixel to hold the data stored at that address for the SIMD operation.Type: GrantFiled: August 15, 2000Date of Patent: September 13, 2005Assignee: Microsoft CorporationInventors: Thomas M. Olano, Mark S. Peercy
-
Patent number: 6933941Abstract: One aspect of the invention is a method for representing a scene (S). The method includes providing a higher-level appearance description of an appearance of geometry in a retained-mode representation (13a, 300). The method also includes traversing the retained-mode representation (13a, 300) to provide a final representation (13b, 310, 320) that can be rendered by a graphics pipeline (17).Type: GrantFiled: April 10, 2001Date of Patent: August 23, 2005Assignee: Microsoft CorporationInventors: Mark S. Peercy, David Blythe, Bradley A. Grantham, P. Jeffrey Ungar