Patents by Inventor Mark S. Rowland

Mark S. Rowland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8155258
    Abstract: A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: April 10, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mark S. Rowland, Neal J. Snyderman
  • Publication number: 20110176648
    Abstract: A portable neutron generator includes a Radio Frequency Quadrupole linear accelerator designed to accelerate charged particles of hydrogen (protons) to energies useful for producing neutrons with the (p,n) reaction on lithium. The ion source is driven by a coaxial feed and a spiral antenna to couple the microwave power into the plasma. The linear accelerator is driven by a 600 MHz pulsed RF power supply. A differential pumping scheme is used to balance the need for a high gas load on the ion source end and good vacuum on the accelerator end.
    Type: Application
    Filed: December 22, 2010
    Publication date: July 21, 2011
    Inventors: Mark S. Rowland, Wolfgang Stoeffi, Robert Wray Hamm
  • Publication number: 20100332145
    Abstract: A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.
    Type: Application
    Filed: October 26, 2007
    Publication date: December 30, 2010
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Mark S. Rowland, Neal J. Snyderman
  • Publication number: 20100215138
    Abstract: A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.
    Type: Application
    Filed: February 24, 2010
    Publication date: August 26, 2010
    Inventors: Mark S. Rowland, Neal J. Snyderman
  • Patent number: 7756237
    Abstract: A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: July 13, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Manoj K. Prasad, Neal J. Snyderman, Mark S. Rowland
  • Patent number: 7755015
    Abstract: A neutron multi-detector array feeds pulses in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel. The word is read at regular intervals, all bits simultaneously, to minimize latency. The electronics then pass the word to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 13, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mark S. Rowland, Raymond A. Alvarez
  • Publication number: 20090114835
    Abstract: A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
    Type: Application
    Filed: June 26, 2008
    Publication date: May 7, 2009
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Manoj K. Prasad, Neal J. Snyderman, Mark S. Rowland
  • Publication number: 20080205580
    Abstract: A neutron multi-detector array feeds pulses in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel. The word is read at regular intervals, all bits simultaneously, to minimize latency. The electronics then pass the word to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup.
    Type: Application
    Filed: March 12, 2008
    Publication date: August 28, 2008
    Inventors: Mark S. Rowland, Raymond A. Alvarez
  • Patent number: 7339172
    Abstract: A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: March 4, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mark S. Rowland, Mark E. Oldaker
  • Patent number: 7285784
    Abstract: A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions (“library definitions”) is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: October 23, 2007
    Assignee: The Regents of the University of California
    Inventors: Mark S. Rowland, Douglas E. Howard, James L. Wong, James L. Jessup, Greg M. Bianchini, Wayne O. Miller
  • Patent number: 7064337
    Abstract: A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: June 20, 2006
    Assignee: The Regents of the University of California
    Inventors: Mark S. Rowland, Douglas E. Howard, James L. Wong, James L. Jessup, Greg M. Bianchini, Wayne O. Miller
  • Publication number: 20040217296
    Abstract: A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.
    Type: Application
    Filed: April 8, 2003
    Publication date: November 4, 2004
    Applicant: The Regents of the University of California
    Inventors: Mark S. Rowland, Douglas E. Howard, James L. Wong, James L. Jessup, Greg M. Bianchini, Wayne O. Miller
  • Publication number: 20040195517
    Abstract: A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions (“library definitions”) is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 7, 2004
    Applicant: The Regents of the University of California
    Inventors: Mark S. Rowland, Douglas E. Howard, James L. Wong, James L. Jessup, Greg M. Bianchini, Wayne O. Miller
  • Patent number: 4814623
    Abstract: A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.
    Type: Grant
    Filed: April 22, 1987
    Date of Patent: March 21, 1989
    Assignee: University of New Mexico
    Inventors: J. Craig Robertson, deceased, Mark S. Rowland