Patents by Inventor Mark S. Swanson

Mark S. Swanson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230407809
    Abstract: In at least some implementations, a method of controlling fuel injection events, includes determining at least one engine operating condition, determining timing of a desired pressure in an engine intake chamber or at the outlet of a fuel injector, and initiating a fuel injection event as a function of the at least one engine operating condition and the desired pressure. The fuel injection event is initiated prior to the desired pressure occurring and wherein the fuel injection event occurs for a duration such that the fuel injection event terminates after the desired pressure occurs.
    Type: Application
    Filed: September 5, 2023
    Publication date: December 21, 2023
    Inventors: Takashi Abei, Tatsuya Chiba, Mark S. Swanson
  • Patent number: 11773803
    Abstract: In at least some implementations, a method of controlling fuel injection events, includes determining at least one engine operating condition, determining timing of a desired pressure in an engine intake chamber or at the outlet of a fuel injector, and initiating a fuel injection event as a function of the at least one engine operating condition and the desired pressure. The fuel injection event is initiated prior to the desired pressure occurring and wherein the fuel injection event occurs for a duration such that the fuel injection event terminates after the desired pressure occurs.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: October 3, 2023
    Assignee: Walbro LLC
    Inventors: Takashi Abei, Tatsuya Chiba, Mark S. Swanson
  • Publication number: 20230015191
    Abstract: In at least some implementations, a method of control-ling fuel injection events, includes determining at least one engine op-erating condition, determining timing of a desired pressure in an engine intake chamber or at the outlet of a fuel injector, and initiating a fuel injection event as a function of the at least one engine operating condition and the desired pressure. The fuel injection event is initiated prior to the desired pressure occurring and wherein the fuel injection event occurs for a duration such that the fuel injection event terminates after the desired pressure occurs.
    Type: Application
    Filed: December 2, 2020
    Publication date: January 19, 2023
    Inventors: Takashi Abei, Tatsuya Chiba, Mark S. Swanson
  • Publication number: 20220412337
    Abstract: In at least some implementations, a method of forming a diaphragm for a liquid pump, includes clamping a substantially planar piece of material about a periphery, and plastically deforming the piece of material inboard of the clamped periphery. In at least some implementations, the material is plastically deformed by pressing a forming member against the material, or the material is plastically deformed by applying a fluid under pressure against the material.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Inventors: Nobuyuki Kuroki, Katsuaki Hamataka, Mark S. Swanson, Tetsuya Takahashi, Teruhiko Tobinai
  • Patent number: 10358996
    Abstract: A method and apparatus controlling the fuel-to-air ratio of a fuel and air mixture supplied to an operating engine includes the steps of determining a first engine speed before enleanment of the mixture, determining a second engine speed near or at the end of a period of enleanment of the mixture, and after ending the enleanment, determining whether the engine speed recovers within a predetermined range of the first engine speed and if so determining a delta speed difference between the first and second speeds and using this delta speed difference as a factor in determining a change in the fuel-to-air ratio of the fuel mixture supplied to the engine.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 23, 2019
    Assignee: Walbro LLC
    Inventors: Martin N. Andersson, Mark S. Swanson, Takashi Abei, Cyrus M. Healy
  • Publication number: 20190162177
    Abstract: In at least some implementations, a diaphragm for a fluid pump includes a first layer formed from a first material that inhibits or prevents vapor permeation through the diaphragm, and a second layer coupled to the first layer and formed from a second material different than the first material. The first material may include at least one of fluoropolymers, perfluoroalkoxy (PFA), polyfluoroethylenepropylene (FEP), polytetrafluoroethylene (PTFE), liquid crystal polymers, nylons, thin metal foil or film, or ethylene vinyl alcohol, and the fluoropolymer may be a fluoroelastomer. The first layer may be continuous and without perforations in an area of the diaphragm adapted to be exposed to a fluid. The first layer may include a base material and a coating that prevents vapor permeation therethrough. The second material may include at least one of NBR rubber, H-NBR, NBR coated or impregnated fiber or nylon materials, or a fluoroelastomer.
    Type: Application
    Filed: August 1, 2017
    Publication date: May 30, 2019
    Inventors: Nobuyuki Kuroki, Katsuaki Hamataka, Mark S. Swanson, Tetsuya Takahashi, Teruhiko Tobinai
  • Publication number: 20170314490
    Abstract: A method and apparatus controlling the fuel-to-air ratio of a fuel and air mixture supplied to an operating engine includes the steps of determining a first engine speed before enleanment of the mixture, determining a second engine speed near or at the end of a period of enleanment of the mixture, and after ending the enleanment, determining whether the engine speed recovers within a predetermined range of the first engine speed and if so determining a delta speed difference between the first and second speeds and using this delta speed difference as a factor in determining a change in the fuel-to-air ratio of the fuel mixture supplied to the engine.
    Type: Application
    Filed: September 30, 2016
    Publication date: November 2, 2017
    Inventors: Martin N. Andersson, Mark S. Swanson, Takashi Abei, Cyrus M. Healy
  • Publication number: 20170306863
    Abstract: In at least some implementations, a method of controlling engine idle speed includes comparing engine speed to a speed threshold where the speed threshold may include a range of speeds, if the engine speed is outside of the speed threshold, adjusting the timing of an ignition spark up to a threshold amount of ignition timing adjustment, and if the engine speed is not within said speed threshold after adjustment up to the threshold amount of ignition timing adjustment then adjusting the air/fuel mixture provided to the engine to bring the engine speed within said speed threshold.
    Type: Application
    Filed: November 6, 2015
    Publication date: October 26, 2017
    Inventors: Martin N. Andersson, Mark S. Swanson
  • Patent number: 9765724
    Abstract: An engine system may include a fuel and air supply circuit and an exhaust circuit, a temperature sensor mounted on an exterior of the engine and an oxygen sensor located in the exhaust circuit. The fuel and air supply circuit may include a throttle body mounted on the engine and having a throttle valve to control the flow rate of air delivered to the engine, a fuel injector carried by the throttle body to deliver fuel to the engine and a fuel rail carried by at least one of the throttle body and the fuel injector and having an input to receive a supply of fuel and an outlet through which fuel is routed to the fuel injector. An engine control unit may be communicated with these components to control the fuel and air mixture provided to the engine as a function of the temperature and oxygen sensor outputs.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: September 19, 2017
    Assignee: Walbro LLC
    Inventors: Massimo Casoni, William E. Galka, Bradley J. Roche, David L. Speirs, Mark S. Swanson, Eric G. Zbytowski
  • Patent number: 9702312
    Abstract: In at least some implementations, an engine control process includes an engine speed test and other steps. The engine speed test includes the steps of a) determining a first engine speed, b) changing the air/fuel ratio of a fuel mixture delivered to the engine, and c) determining a second engine speed after at least some of the air/fuel ratio changing event, Based at least in part on the difference between the first engine speed and the second engine speed it is determined if a change in the air/fuel ratio of the fuel mixture delivered to the engine is needed. If a change to the air/fuel ratio was indicated, the air/fuel ratio of a fuel mixture delivered to the engine is changed.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: July 11, 2017
    Assignee: Walbro LLC
    Inventors: Martin N. Andersson, Mark S. Swanson
  • Publication number: 20160252039
    Abstract: An engine system may include a fuel and air supply circuit and an exhaust circuit, a temperature sensor mounted on an exterior of the engine and an oxygen sensor located in the exhaust circuit. The fuel and air supply circuit may include a throttle body mounted on the engine and having a throttle valve to control the flow rate of air delivered to the engine, a fuel injector carried by the throttle body to deliver fuel to the engine and a fuel rail carried by at least one of the throttle body and the fuel injector and having an input to receive a supply of fuel and an outlet through which fuel is routed to the fuel injector. An engine control unit may be communicated with these components to control the fuel and air mixture provided to the engine as a function of the temperature and oxygen sensor outputs.
    Type: Application
    Filed: May 11, 2016
    Publication date: September 1, 2016
    Inventors: Massimo Casoni, William E. Galka, Bradley J. Roche, David L. Speirs, Mark S. Swanson, Eric G. Zbytowski
  • Patent number: 9371786
    Abstract: An engine system may include a fuel and air supply circuit and an exhaust circuit, a temperature sensor mounted on an exterior of the engine and an oxygen sensor located in the exhaust circuit. The fuel and air supply circuit may include a throttle body mounted on the engine and having a throttle valve to control the flow rate of air delivered to the engine, a fuel injector carried by the throttle body to deliver fuel to the engine and a fuel rail carried by at least one of the throttle body and the fuel injector and having an input to receive a supply of fuel and an outlet through which fuel is routed to the fuel injector. An engine control unit may be communicated with these components to control the fuel and air mixture provided to the engine as a function of the temperature and oxygen sensor outputs.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 21, 2016
    Assignee: WALBRO LLC
    Inventors: Massimo Casoni, William E. Galka, Bradley J. Roche, David L. Speirs, Mark S. Swanson, Eric G. Zbytowski
  • Publication number: 20160032855
    Abstract: In at least some implementations, an engine control process includes an engine speed test and other steps. The engine speed test includes the steps of a) determining a first engine speed, b) changing the air/fuel ratio of a fuel mixture delivered to the engine, and c) determining a second engine speed after at least some of the air/fuel ratio changing event, Based at least in part on the difference between the first engine speed and the second engine speed it is determined if a change in the air/fuel ratio of the fuel mixture delivered to the engine is needed.
    Type: Application
    Filed: March 12, 2014
    Publication date: February 4, 2016
    Inventors: Martin N. Andersson, Mark S. Swanson
  • Patent number: 9022011
    Abstract: A method of operating an engine is disclosed, which includes determining a peak power condition for the engine, measuring a temperature associated with the engine at said peak power condition, comparing the temperature measured with a previously determined temperature associated with a known peak power condition of the engine, determining an offset value based on the comparison made in step, controlling at least one of an air-fuel mixture delivered to the engine or ignition spark timing based on said offset value. Various engine fuel delivery systems, carburetors, fuel injection and control systems also are disclosed.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 5, 2015
    Assignee: Walbro Engine Management, L.L.C.
    Inventors: Martin N. Andersson, Andrew E. Bejcek, Massimo Casoni, William E. Galka, Cyrus M. Healy, Alessandro Pascoli, Ronald H. Roche, Mark S. Swanson, James E. Van Allen, John C. Woody
  • Publication number: 20130054121
    Abstract: An engine system may include a fuel and air supply circuit and an exhaust circuit, a temperature sensor mounted on an exterior of the engine and an oxygen sensor located in the exhaust circuit. The fuel and air supply circuit may include a throttle body mounted on the engine and having a throttle valve to control the flow rate of air delivered to the engine, a fuel injector carried by the throttle body to deliver fuel to the engine and a fuel rail carried by at least one of the throttle body and the fuel injector and having an input to receive a supply of fuel and an outlet through which fuel is routed to the fuel injector. An engine control unit may be communicated with these components to control the fuel and air mixture provided to the engine as a function of the temperature and oxygen sensor outputs.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 28, 2013
    Applicant: WALBRO ENGINE MANAGEMENT, L.L.C.
    Inventors: Massimo Casoni, William E. Galka, Bradley J. Roche, David L. Speirs, Mark S. Swanson, Eric G. Zbytowski
  • Patent number: 8240292
    Abstract: A method, fuel system, and components for facilitating the delivery of liquid fuel from a fuel tank in fluid communication with a float bowl carburetor of an internal combustion engine, wherein evaporative emissions of the fuel from the fuel tank and float bowl carburetor are mitigated. During operation of the engine, fluid communication is permitted between the fuel tank and the carburetor, and fuel vapors at a predetermined threshold superatmospheric pressure are permitted to vent outwardly from the fuel tank. During inoperation of the engine, fluid communication is prevented between the fuel tank and the carburetor, and fuel vapors at a predetermined threshold superatmospheric pressure are permitted to vent outwardly from the fuel tank.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: August 14, 2012
    Assignee: Walbro Engine Management, L.L.C.
    Inventors: Ronald H. Roche, Mark S. Swanson, John C. Woody
  • Publication number: 20100258099
    Abstract: A method of operating an engine is disclosed, which includes determining a peak power condition for the engine, measuring a temperature associated with the engine at said peak power condition, comparing the temperature measured with a previously determined temperature associated with a known peak power condition of the engine, determining an offset value based on the comparison made in step, controlling at least one of an air-fuel mixture delivered to the engine or ignition spark timing based on said offset value. Various engine fuel delivery systems, carburetors, fuel injection and control systems also are disclosed.
    Type: Application
    Filed: October 27, 2008
    Publication date: October 14, 2010
    Applicant: WALBRO ENGINE MANAGEMENT ,LLC.
    Inventors: Martin N. Andersson, Andrew E. Bejcek, Massimo Casoni, William E. Galka, Cyrus M. Healy, Alessandro Pascoli, Ronald H. Roche, Mark S. Swanson, James E. Van Allen, John C. Woody
  • Patent number: 7690342
    Abstract: A priming and purging fuel system for an internal combustion engine purges a diaphragm carburetor of the engine of stale liquid fuel and accumulated fuel vapor and air while simultaneously priming the carburetor and/or engine with liquid fuel for starting. A start pump of the fuel system supplies at least liquid fuel to a priming circuit and preferably at least fuel vapor and air to a purging circuit of the fuel system. The priming circuit delivers the priming fuel to the engine via a conduit that leads to an isolation chamber located between an inlet jet and preferably an outlet jet. The cross sectional flow area of the jets are appropriately sized to flow a needed amount of priming fuel to the carburetor and/or engine for starting without flooding the engine. The combination of the enlarged isolation chamber and jets, at least substantially prevents fuel dribble from the priming circuit and into the engine while running.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: April 6, 2010
    Assignee: Walbro Engine Management, L.L.C.
    Inventors: Gary U. Gliniecki, Mark S. Swanson
  • Patent number: 7591251
    Abstract: A method, fuel system, and components for facilitating the delivery of liquid fuel from a fuel tank in fluid communication with a float bowl carburetor of an internal combustion engine, wherein evaporative emissions of the fuel from the fuel tank and float bowl carburetor are mitigated. During operation of the engine, fluid communication is permitted between the fuel tank and the carburetor, and fuel vapors at a predetermined threshold superatmospheric pressure are permitted to vent outwardly from the fuel tank. During inoperation of the engine, fluid communication is prevented between the fuel tank and the carburetor, and fuel vapors at a predetermined threshold superatmospheric pressure are permitted to vent outwardly from the fuel tank.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: September 22, 2009
    Assignee: Walbro Engine Management, L.L.C.
    Inventors: Ronald H. Roche, Mark S. Swanson, John C. Woody
  • Publication number: 20080163841
    Abstract: A priming and purging fuel system for an internal combustion engine purges a diaphragm carburetor of the engine of stale liquid fuel and accumulated fuel vapor and air while simultaneously priming the carburetor and/or engine with liquid fuel for starting. A start pump of the fuel system supplies at least liquid fuel to a priming circuit and preferably at least fuel vapor and air to a purging circuit of the fuel system. The priming circuit delivers the priming fuel to the engine via a conduit that leads to an isolation chamber located between an inlet jet and preferably an outlet jet. The cross sectional flow area of the jets are appropriately sized to flow a needed amount of priming fuel to the carburetor and/or engine for starting without flooding the engine. The combination of the enlarged isolation chamber and jets, at least substantially prevents fuel dribble from the priming circuit and into the engine while running.
    Type: Application
    Filed: January 5, 2007
    Publication date: July 10, 2008
    Inventors: Gary U. Gliniecki, Mark S. Swanson