Patents by Inventor Mark Schüttpelz

Mark Schüttpelz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10983326
    Abstract: At least one embodiment relates to an apparatus for super-resolution fluorescence-microscopy imaging of a sample. The apparatus includes an objective lens having a forward field of view, the objective lens being configured to collect light. The apparatus may also include a processing arrangement configured to perform super-resolution fluorescence-microscopy imaging of the sample with the collected light. Further, the apparatus includes a waveguide component located forward of the objective lens and configured to (i) receive light from outside the forward field of view, and (ii) use total internal reflection within the waveguide component to direct excitation light. In addition, the apparatus includes an electronic optical-path control system configured to cause input light of a first wavelength to follow a first optical path corresponding to a first optical mode and also configured to cause input light of the first wavelength to follow a second optical path corresponding to a second optical mode.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 20, 2021
    Inventors: Balpreet Singh Ahluwalia, Mark Schüttpelz
  • Publication number: 20190129161
    Abstract: At least one embodiment relates to an apparatus for super-resolution fluorescence-microscopy imaging of a sample. The apparatus includes an objective lens having a forward field of view, the objective lens being configured to collect light. The apparatus may also include a processing arrangement configured to perform super-resolution fluorescence-microscopy imaging of the sample with the collected light. Further, the apparatus includes a waveguide component located forward of the objective lens and configured to (i) receive light from outside the forward field of view, and (ii) use total internal reflection within the waveguide component to direct excitation light. In addition, the apparatus includes an electronic optical-path control system configured to cause input light of a first wavelength to follow a first optical path corresponding to a first optical mode and also configured to cause input light of the first wavelength to follow a second optical path corresponding to a second optical mode.
    Type: Application
    Filed: April 12, 2017
    Publication date: May 2, 2019
    Inventors: Balpreet Singh Ahluwalia, Mark Schüttpelz