Patents by Inventor Mark Scott Payne

Mark Scott Payne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100048448
    Abstract: A process is provided for producing target concentrations of peroxycarboxylic acids from carboxylic acid esters. More specifically, carboxylic acid esters are reacted with an inorganic peroxide, such as hydrogen peroxide, in the presence of an enzyme catalyst having perhydrolysis activity under conditions where control of reaction pH by selection of buffer concentration and concentration of perhydrolase and reactants produces a targeted concentration of peroxycarboxylic acids. The present perhydrolase catalysts are classified as members of the carbohydrate esterase family 7 (CE-7) based on the conserved structural features. Further, disinfectant formulations comprising the peracids produced by the processes described herein are provided, as are corresponding methods of use.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 25, 2010
    Inventors: Robert DiCosimo, Mark Scott Payne, Eugenia Costa Hann
  • Patent number: 7550420
    Abstract: A process is provided to produce a concentrated aqueous peracid solution in situ using at least one enzyme having perhydrolase activity in the presence of hydrogen peroxide (at a concentration of at least 500 mM) under neutral to acidic reaction conditions from suitable carboxylic acid esters (including glycerides) and/or amides substrates. The concentrated peracid solution produced is sufficient for use in a variety of disinfection and/or bleaching applications.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: June 23, 2009
    Assignee: E. I. DuPont De Nemours and Company
    Inventors: Robert DiCosimo, Mark Scott Payne, Eugenia Costa Hann, Vincent Brian Croud, John Edward Gavagan, Lorraine Winona Wagner
  • Patent number: 6251650
    Abstract: The present invention provides a nitrile hydratase nucleic acid fragment isolated from Pseudomonas putida which encodes a nitrile hydratase activity capable of catalyzing the hydrolysis of certain racemic nitriles to the corresponding R- or S-amides. Also provided are transformed microorganisms capable of the active expression of said nitrile hydratase activity. Additionally, the invention provides a transformant harboring the nitrile hydratase gene in conjunction with an amidase gene, both of which may be co-expressed producing active nitrile hydratase and amidase enzymes respectively. Methods for the production of such enantiomeric materials are also provided.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: June 26, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert Donald Fallon, Mark James Nelson, Mark Scott Payne
  • Patent number: 6133421
    Abstract: 350 The present invention provides a nitrile hydratase nucleic acid fragment isolated from Pseudomonas putida which encodes a nitrile hydratase activity capable of catalyzing the hydrolysis of certain racemic nitriles to the corresponding R- or S-amides. Also provided are transformed microorganisms capable of the active expression of said nitrile hydratase activity. Additionally, the invention provides a transformant harboring the nitrile hydratase gene in conjunction with an amidase gene, both of which may be co-expressed producing active nitrile hydratase and amidase enzymes respectively. Methods for the production of such enantiomeric materials are also provided.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: October 17, 2000
    Assignee: E. I. du Pont de Nemours & Company
    Inventors: Robert Donald Fallon, Mark James Nelson, Mark Scott Payne
  • Patent number: 5888785
    Abstract: The present invention provides a nitrile hydratase nucleic acid fragment isolated from Pseudomonas putida which encodes a nitrile hydratase activity capable of catalyzing the hydrolysis of certain racemic nitrites to the corresponding R- or S-amides. Also provided are transformed microorganisms capable of the active expression of said nitrile hydratase activity. Additionally, the invention provides a transformant harboring the nitrile hydratase gene in conjunction with an amidase gene, both of which may be co-expressed producing active nitrile hydratase and amidase enzymes respectively. Methods for the production of such enantiomeric materials are also provided.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: March 30, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert Donald Fallon, Mark James Nelson, Mark Scott Payne
  • Patent number: 5811286
    Abstract: The present invention provides a nitrile hydratase nucleic acid fragment isolated from Pseudomonas putida which encodes a nitrile hydratase activity capable of catalyzing the hydrolysis of certain racemic nitriles to the corresponding R- or S-amides. Also provided are transformed microorganisms capable of the active expression of said nitrile hydratase activity. Additionally, the invention provides a transformant harboring the nitrile hydratase gene in conjunction with an amidase gene, both of which may be co-expressed producing active nitrile hydratase and amidase enzymes respectively. Methods for the production of such enantiomeric materials are also provided.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: September 22, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert Donald Fallon, Mark James Nelson, Mark Scott Payne
  • Patent number: 5693490
    Abstract: Methylotrophic yeast have been transformed with a heterologous gene encoding glycolate oxidase. The transformed methylotrophic yeast are useful as a catalyst for transforming glycolate to glyoxylate.
    Type: Grant
    Filed: August 15, 1994
    Date of Patent: December 2, 1997
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: David Leroy Anton, Robert Dicosimo, John Edward Gavagan, Mark Scott Payne