Patents by Inventor Mark Semmelmeyer

Mark Semmelmeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11561923
    Abstract: An apparatus includes a first device having a clock signal and configured to communicate, via a data bus, with a second device configured to assert a data strobe signal and a plurality of data bit signals on the data bus. The first device may include a control circuit configured, during a training phase, to determine relative timing between the clock signal, the plurality of data bit signals, and the data strobe signal. The first device may determine, using a first set of sampling operations, a first timing relationship of the plurality of data bit signals relative to the data strobe signal, and determine, using a second set of sampling operations, a second timing relationship of the plurality of data bit signals and the data strobe signal relative to the clock signal. During an operational phase, the control circuit may be configured to use delays based on the first and second timing relationships to sample data from the second device on the data bus.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: January 24, 2023
    Assignee: Oracle International Corporation
    Inventors: Navaneeth P. Jamadagni, Ji Eun Jang, Anatoly Yakovlev, Vincent Lee, Guanghua Shu, Mark Semmelmeyer
  • Publication number: 20210224221
    Abstract: An apparatus includes a first device having a clock signal and configured to communicate, via a data bus, with a second device configured to assert a data strobe signal and a plurality of data bit signals on the data bus. The first device may include a control circuit configured, during a training phase, to determine relative timing between the clock signal, the plurality of data bit signals, and the data strobe signal. The first device may determine, using a first set of sampling operations, a first timing relationship of the plurality of data bit signals relative to the data strobe signal, and determine, using a second set of sampling operations, a second timing relationship of the plurality of data bit signals and the data strobe signal relative to the clock signal. During an operational phase, the control circuit may be configured to use delays based on the first and second timing relationships to sample data from the second device on the data bus.
    Type: Application
    Filed: April 2, 2021
    Publication date: July 22, 2021
    Inventors: Navaneeth P. Jamadagni, Ji Eun Jang, Anatoly Yakovlev, Vincent Lee, Guanghua Shu, Mark Semmelmeyer
  • Patent number: 10983944
    Abstract: An apparatus includes a first device having a clock signal and configured to communicate, via a data bus, with a second device configured to assert a data strobe signal and a plurality of data bit signals on the data bus. The first device may include a control circuit configured, during a training phase, to determine relative timing between the clock signal, the plurality of data bit signals, and the data strobe signal. The first device may determine, using a first set of sampling operations, a first timing relationship of the plurality of data bit signals relative to the data strobe signal, and determine, using a second set of sampling operations, a second timing relationship of the plurality of data bit signals and the data strobe signal relative to the clock signal. During an operational phase, the control circuit may be configured to use delays based on the first and second timing relationships to sample data from the second device on the data bus.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 20, 2021
    Assignee: Oracle International Corporation
    Inventors: Navaneeth P. Jamadagni, Ji Eun Jang, Anatoly Yakovlev, Vincent Lee, Guanghua Shu, Mark Semmelmeyer
  • Publication number: 20200233832
    Abstract: An apparatus includes a first device having a clock signal and configured to communicate, via a data bus, with a second device configured to assert a data strobe signal and a plurality of data bit signals on the data bus. The first device may include a control circuit configured, during a training phase, to determine relative timing between the clock signal, the plurality of data bit signals, and the data strobe signal. The first device may determine, using a first set of sampling operations, a first timing relationship of the plurality of data bit signals relative to the data strobe signal, and determine, using a second set of sampling operations, a second timing relationship of the plurality of data bit signals and the data strobe signal relative to the clock signal. During an operational phase, the control circuit may be configured to use delays based on the first and second timing relationships to sample data from the second device on the data bus.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 23, 2020
    Inventors: Navaneeth P. Jamadagni, Ji Eun Jang, Anatoly Yakovlev, Vincent Lee, Guanghua Shu, Mark Semmelmeyer
  • Patent number: 10656205
    Abstract: Embodiments include systems and methods for in-system, scan-based device testing using novel narrow-parallel (NarPar) implementations. Embodiments include a virtual automated test environment (VATE) system that can be disposed within the operating environment of an integrated circuit for which scan-based testing is desired (e.g., a chip under test, or CuT). For example, the VATE system is coupled with a service processor and with the CuT via a novel NarPar interface. A sequence controller can drive a narrow set of parallel scan pins on the CuT via the NarPar interface of the VATE system in accordance with an adapted test sequence having bit vector stimulants and expected responses. Responses of the CuT to the bit vector stimulants can be read out and compared to the expected results for scan-based testing of the chip.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: May 19, 2020
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Mark Semmelmeyer, Ali Vahidsafa, Sebastian Turullols, Scott Cooke, Senthilkumar Diraviam, Preethi Sama
  • Publication number: 20190235023
    Abstract: Embodiments include systems and methods for in-system, scan-based device testing using novel narrow-parallel (NarPar) implementations. Embodiments include a virtual automated test environment (VATE) system that can be disposed within the operating environment of an integrated circuit for which scan-based testing is desired (e.g., a chip under test, or CuT). For example, the VATE system is coupled with a service processor and with the CuT via a novel NarPar interface. A sequence controller can drive a narrow set of parallel scan pins on the CuT via the NarPar interface of the VATE system in accordance with an adapted test sequence having bit vector stimulants and expected responses. Responses of the CuT to the bit vector stimulants can be read out and compared to the expected results for scan-based testing of the chip.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 1, 2019
    Inventors: MARK SEMMELMEYER, ALI VAHIDSAFA, SEBASTIAN TURULLOLS, SCOTT COOKE, SENTHILKUMAR DIRAVIAM, PREETHI SAMA
  • Patent number: 9686852
    Abstract: An embodiment is method comprising attaching a first die and a second die to a first surface of a first interposer using respective ones of first conductive connectors coupled to respective first surfaces of the first die and the second die; attaching a third die and a fourth die to a second surface of the first interposer using respective ones of second conductive connectors, the second surface of the first interposer being opposite the first surface of the interposer; and attaching the first die and the second die to a substrate using respective ones of third conductive connectors coupled to respective second surfaces of the first die and the second die.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: June 20, 2017
    Assignee: Taiwan Semicondcutor Manufacturing Company, Ltd.
    Inventors: Mark Semmelmeyer, Sandeep Kumar Goel
  • Publication number: 20150216030
    Abstract: An embodiment is method comprising attaching a first die and a second die to a first surface of a first interposer using respective ones of first conductive connectors coupled to respective first surfaces of the first die and the second die; attaching a third die and a fourth die to a second surface of the first interposer using respective ones of second conductive connectors, the second surface of the first interposer being opposite the first surface of the interposer; and attaching the first die and the second die to a substrate using respective ones of third conductive connectors coupled to respective second surfaces of the first die and the second die.
    Type: Application
    Filed: April 7, 2015
    Publication date: July 30, 2015
    Inventors: Mark Semmelmeyer, Sandeep Kumar Goel
  • Patent number: 9054101
    Abstract: An embodiment is method comprising attaching a first die and a second die to a first surface of a first interposer using respective ones of first conductive connectors coupled to respective first surfaces of the first die and the second die; attaching a third die and a fourth die to a second surface of the first interposer using respective ones of second conductive connectors, the second surface of the first interposer being opposite the first surface of the interposer; and attaching the first die and the second die to a substrate using respective ones of third conductive connectors coupled to respective second surfaces of the first die and the second die.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: June 9, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mark Semmelmeyer, Sandeep Kumar Goel
  • Publication number: 20140147972
    Abstract: An embodiment is method comprising attaching a first die and a second die to a first surface of a first interposer using respective ones of first conductive connectors coupled to respective first surfaces of the first die and the second die; attaching a third die and a fourth die to a second surface of the first interposer using respective ones of second conductive connectors, the second surface of the first interposer being opposite the first surface of the interposer; and attaching the first die and the second die to a substrate using respective ones of third conductive connectors coupled to respective second surfaces of the first die and the second die.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mark Semmelmeyer, Sandeep Kumar Goel
  • Patent number: 8686570
    Abstract: A structure comprises a first die, a second die, an interposer, a third die, and a fourth die. The first die and the second die each have a first surface and a second surface. First conductive connectors are coupled to the first surfaces of the first and second dies, and second conductive connectors are coupled to the second surfaces of the first and second dies. The interposer is over the first and second dies. A first surface of the interposer is coupled to the first conductive connectors, and a second surface of the interposer is coupled to third conductive connectors. The third and fourth dies are over the interposer and are coupled to the third conductive connectors. The first die is communicatively coupled to the second die through the interposer, and/or the third die is communicatively coupled to the fourth die through the interposer.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: April 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mark Semmelmeyer, Sandeep Kumar Goel
  • Publication number: 20130187292
    Abstract: A structure comprises a first die, a second die, an interposer, a third die, and a fourth die. The first die and the second die each have a first surface and a second surface. First conductive connectors are coupled to the first surfaces of the first and second dies, and second conductive connectors are coupled to the second surfaces of the first and second dies. The interposer is over the first and second dies. A first surface of the interposer is coupled to the first conductive connectors, and a second surface of the interposer is coupled to third conductive connectors. The third and fourth dies are over the interposer and are coupled to the third conductive connectors. The first die is communicatively coupled to the second die through the interposer, and/or the third die is communicatively coupled to the fourth die through the interposer.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mark Semmelmeyer, Sandeep Kumar Goel
  • Patent number: 5867735
    Abstract: A non-blocking load buffer is provided for use in a high-speed microprocessor and memory system. The non-blocking load buffer interfaces a high-speed processor/cache bus, which connects a processor and a cache to the non-blocking load buffer, with a lower speed peripheral bus, which connects to peripheral devices. The non-blocking load buffer allows data to be retrieved from relatively low bandwidth peripheral devices directly from programmed I/O of the processor at the maximum rate of the peripherals so that the data may be processed and stored without unnecessarily idling the processor. I/O requests from several processors within a multiprocessor may simultaneously be buffered so that a plurality of non-blocking loads may be processed during the latency period of the device. As a result, a continuous maximum throughput from multiple I/O devices by the programmed I/O of the processor is achieved and the time required for completing tasks and processing data may be reduced.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: February 2, 1999
    Assignee: Microunity Systems Engineering, Inc.
    Inventors: William K. Zuravleff, Mark Semmelmeyer, Timothy Robinson, Scott Furman
  • Patent number: 5812799
    Abstract: A non-blocking load buffer for use in a high-speed microprocessor and memory system. The non-blocking load buffer interfaces a high-speed processor/cache bus, which connects a processor and a cache to the non-blocking load buffer, with a lower speed peripheral bus, which connects to peripheral devices. The non-blocking load buffer allows data to be retrieved from relatively low bandwidth peripheral devices directly from programmed I/O of the processor at the maximum rate of the peripherals so that the data may be processed and stored without unnecessarily idling the processor. I/O requests from several processors within a multiprocessor may simultaneously be buffered so that a plurality of non-blocking loads may be processed during the latency period of the device. As a result, a continuous maximum throughput from multiple I/O devices by the programmed I/O of the processor is achieved and the time required for completing tasks and processing data may be reduced.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 22, 1998
    Assignee: Microunity Systems Engineering, Inc.
    Inventors: William K. Zuravleff, Mark Semmelmeyer, Timothy Robinson, Scott Furman
  • Patent number: 5737547
    Abstract: A non-blocking load buffer is provided for use in a high-speed microprocessor and memory system. The non-blocking load buffer interfaces a high-speed processor/cache bus, which connects a processor and a cache to the non-blocking load buffer, with a lower speed peripheral bus, which connects to peripheral devices. The non-blocking load buffer allows data to be retrieved from relatively low bandwidth peripheral devices directly from programmed I/O of the processor at the maximum rate of the peripherals so that the data may be processed and stored without unnecessarily idling the processor. I/O requests from several processors within a multiprocessor may simultaneously be buffered so that a plurality of non-blocking loads may be processed during the latency period of the device. As a result, a continuous maximum throughput from multiple I/O devices by the programmed I/O of the processor is achieved and the time required for completing tasks and processing data may be reduced.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 7, 1998
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventors: William K. Zuravleff, Mark Semmelmeyer, Timothy Robinson, Scott Furman
  • Patent number: 5381543
    Abstract: The present invention provides a means for operating the CPU in a single chip microprocessor at a multipe of the cycle speed of the memory bus. With the present invention, first and second timing signals are provided. The frequency of the second timing signal is a multiple of the frequency of the first timing signal. The second or fast timing signal is provided to the CPU and the first or slower timing signal is provided to the memory subsystem. A bus interface unit is interposed between the CPU and the memory bus. This bus interface unit receives the RDY signal (i.e. the ready signal) from the memory subsystem and modifies it before it is provided to the CPU. The "ready" signal from the memory subsystem is in an undefined state for a significant portion of each bus cycle. Since at least two CPU cycles occur during each memory access, the bus interface unit must ensure that the CPU does not misinterpret the ready signal from the memory subsystem. The bus interface unit also must modify the ADS signal (i.e.
    Type: Grant
    Filed: March 3, 1994
    Date of Patent: January 10, 1995
    Assignee: Chips and Technologies Inc.
    Inventors: James S. Blomgren, Mark Semmelmeyer, Tuan Luong, Gary Baum
  • Patent number: 5325516
    Abstract: The present invention provides a means for operating the CPU in a single chip microprocessor at a multipe of the cycle speed of the memory bus. With the present invention, first and second timing signals are provided. The frequency of the second timing signal is a multiple of the frequency of the first timing signal. The second or fast timing signal is provided to the CPU and the first or slower timing signal is provided to the memory subsystem. A bus interface unit is interposed between the CPU and the memory bus. This bus interface unit receives the RDY signal (i.e. the ready signal) from the memory subsystem and modifies it before it is provided to the CPU. The "ready" signal from the memory subsystem is in an undefined state for a significant portion of each bus cycle. Since at least two CPU cycles occur during each memory access, the bus interface unit must ensure that the CPU does not misinterpret the ready signal from the memory subsystem. The bus interface unit also must modify the ADS signal (i.e.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: June 28, 1994
    Assignee: Chips and Technologies Inc.
    Inventors: James S. Blomgren, Mark Semmelmeyer, Tuan Luong, Gary Baum
  • Patent number: 5095424
    Abstract: A computer system architecture implementing multiple central processing units, each including a split instruction and operand cache, and that provides for the management of multiple copies (line pairs) of a memory line through the use of a line pair state is described. Systematic management of memory lines when transferred with respect to instruction and operand data cache memories allows the integrity of the system to be maintained at all times. The split cache architecture management determines whether a memory line having a first predetermined system address is present within both the instruction and operand cache memories or will be upon move-in of a memory line. Address tag line pair state information is maintained to allow determinations of whether and where the respective memory line pair members reside. The architecture implements the management of the line pairs on each transfer of a memory line to any of the split caches of the system.
    Type: Grant
    Filed: July 21, 1989
    Date of Patent: March 10, 1992
    Assignee: Amdahl Corporation
    Inventors: Gary A. Woffinden, Theodore S. Robinson, Jeffrey A. Thomas, Robert A. Ertl, James P. Millar, Christopher D. Finan, Joseph A. Petolino, Ajay Shah, Shen H. Wang, Mark Semmelmeyer