Patents by Inventor Mark Spruce

Mark Spruce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210017911
    Abstract: A gas turbine engine includes an engine core, a fan and a gearbox interconnecting the engine core and the fan. The engine core is configured to drive rotation of at least one shaft. The power gearbox is configured to transfer torque from the at least one shaft to an output shaft at a reduced rate. The output shaft is coupled to the fan to drive the fan at the reduced rate and provide trust for the gas turbine engine.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventor: Mark Spruce
  • Publication number: 20210017910
    Abstract: A gas turbine engine includes an engine core, a fan and a gearbox interconnecting the engine core and the fan. The engine core is configured to drive rotation of at least one shaft. The power gearbox is configured to transfer torque from the at least one shaft to an output shaft at a reduced rotational speed. The output shaft is coupled to the fan to drive the fan at the reduced speed and provide trust for the gas turbine engine.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventor: Mark Spruce
  • Patent number: 10859001
    Abstract: A gas turbine engine for an aircraft including: an engine core including a turbine, a compressor, and a core shaft connecting the turbine to the compressor; a fan located upstream of the engine core, the fan including a plurality of fan blades; a gearbox that can receive an input from the core shaft and output drive to the fan so as to drive the fan at a lower rotational speed than the core shaft; and a gearbox support arranged to at least partially support the gearbox within the engine. A flight cycle ratio of: the ? ? torsional ? ? shear ? ? stress ? ? of ? ? the ? ? gearbox ? ? support ? ? at maximum ? ? takeoff ? ? conditions the ? ? torsional ? ? shear ? ? stress ? ? of ? ? the ? ? gearbox ? ? support ? ? at cruise ? ? conditions is less than or equal to 3.20. A method of operating the gas turbine engine is also disclosed.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: December 8, 2020
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Spruce
  • Patent number: 10851715
    Abstract: A gas turbine engine for an aircraft including: an engine core including a turbine, a compressor, and a core shaft connecting the turbine to the compressor; a fan located upstream of the engine core, the fan including a plurality of fan blades; a gearbox that receives an input from the core shaft and outputs drive to a fan shaft via an output of the gearbox so as to drive the fan at a lower rotational speed than the core shaft; and a fan shaft mounting structure arranged to mount the fan shaft within the engine, the fan shaft mounting structure including at least two supporting bearings connected to the fan shaft. A fan-gearbox axial distance is defined as the axial distance between the output of the gearbox and the fan axial centreline, the fan-gearbox axial distance being greater than or equal to 0.35 m.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: December 1, 2020
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Spruce
  • Patent number: 10837370
    Abstract: A gas turbine engine including: an engine core including a turbine, a compressor, and a core shaft connecting the turbine to the compressor; a fan located upstream of the engine core; a fan shaft mounting structure that includes supporting bearings connected to the fan shaft; and an epicyclic gearbox that can receive input from the core shaft, and output drive to the fan shaft so as to drive the fan at a lower rotational speed than the core shaft. The gearbox includes a sun gear, planet gears, a ring gear, and a planet carrier for mounting the planet gears. A torsional stiffness of the planet carrier is greater than or equal to 1.6×108 Nm/rad. The fan shaft mounting structure has: a radial bending stiffness greater than or equal to 7.00×108 N/m, and/or a tilt stiffness greater than or equal to 1.50×107 Nm/rad.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: November 17, 2020
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Spruce
  • Patent number: 10830154
    Abstract: A gas turbine engine includes: an engine core with a turbine, compressor, and core shaft; a fan upstream the engine core; a gearbox that can receive an input from the core shaft and output drive to a fan shaft to drive the fan at a lower rotational speed than the core shaft. A fan-gearbox axial distance is greater than or equal to 0.35 m. The fan shaft has: (i) a radial bending stiffness ratio of a radial bending stiffness of the fan shaft at the fan input to a radial bending stiffness of the fan shaft at the gearbox output that is greater than or equal to 6.0×10?3; and/or (ii) a tilt stiffness ratio of a tilt stiffness of the fan shaft at the fan input to a tilt stiffness of the fan shaft at the gearbox output that is greater than or equal to 2.5×10?2.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: November 10, 2020
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Spruce
  • Patent number: 10823084
    Abstract: An engine for an aircraft includes an engine core having a turbine, a compressor, and a core shaft connecting the turbine to the compressor; a fan located upstream of the engine core, the fan having a plurality of fan blades; a fan shaft; a gearbox that receives an input from the core shaft and outputs drive to the fan via the fan shaft so as to drive the fan at a lower rotational speed than the core shaft, the gearbox being an epicyclic gearbox having a sun gear, a plurality of planet gears, a ring gear, and a planet carrier on which the planet gears are mounted; and a gearbox support arranged to mount the gearbox within the engine. The fan shaft, core shaft, gearbox and the gearbox support together may form a transmission.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: November 3, 2020
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Spruce
  • Patent number: 10816087
    Abstract: A planetary gearing includes a sun gear; a plurality of planet gears, a ring gear; and a plurality of planet pins, wherein respectively one planet pin is arranged inside a planet gear, and the planet pin and the planet gear form a lubricated journal bearing. The planet pin includes an axial bore and an inner surface that comprises an axially forward end and an axially rearward end. The inner diameter of the axial bore of the planet pin varies between the axially forward end and the axially rearward end of the inner surface and has a maximum at least at one axial end. The planet pins respectively form a crowning at their abutment surface such that their outer diameter decreases from a maximum outer diameter towards at least an axial end of the abutment surface, and has a minimum at the axial end.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 27, 2020
    Assignees: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG, ROLLS-ROYCE PLC
    Inventors: Michael Nique, Christopher Campbell, Mark Spruce
  • Patent number: 10815901
    Abstract: A gas turbine engine for an aircraft has an engine core having a turbine, compressor, and core shaft connecting the turbine and compressor; a fan upstream the engine core, the fan having fan blades; and a gearbox. The gearbox receives an input from a core shaft and outputs drive to a fan to drive the fan at a lower rotational speed than the core shaft. The gearbox is an epicyclic gearbox and has a sun gear, planet gears, ring gear, and planet carrier on which the planet gears are mounted. The gearbox has a gear mesh stiffness between the planet gears and the ring gear and a gear mesh stiffness between the planet gears and the sun gear. The gear mesh stiffness between the planet gears and the ring gear divided by that between the planet gears and the sun gear is in the range from 0.90 to 1.28.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 27, 2020
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Spruce
  • Patent number: 10808626
    Abstract: An engine for an aircraft includes an engine core including a turbine, a compressor, and a core shaft connecting the turbine to the compressor; a fan located upstream of the engine core, the fan including a plurality of fan blades; and a gearbox. The gearbox is arranged to receive an input from a core shaft and to output drive to a fan to drive the fan at a lower rotational speed than the core shaft. The gearbox is an epicyclic gearbox and includes a sun gear, a plurality of planet gears, a ring gear, and a planet carrier on which the planet gears are mounted. A ratio of radial bending stiffness of the planet carrier to torsional stiffness of the planet carrier is within a specified range.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 20, 2020
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Spruce
  • Patent number: 10767755
    Abstract: A planetary gearing includes a sun gear rotating about a rotation axis and driven by a sun shaft; planet gears driven by the sun gear; a ring gear engaging the planet gears; and a plurality of planet pins that respectively include an outer-side abutment surface having an axially forward end and an axially rearward end. Respectively, one planet pin is arranged inside a planet gear, and the planet pin and the planet gear form a lubricated journal bearing. At an axially forward face side and/or axially rearward face side, each planet gear forms a recess that extends inside the planet gear starting from the face side. The planet pins respectively form a crowning at their abutment surface such that their outer diameter decreases from a maximum outer diameter towards at least one axial end of the abutment surface, and has a minimum at the axial end.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 8, 2020
    Assignees: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG, ROLLS-ROYCE PLC
    Inventors: Michael Nique, Paul Gorenz, Christopher Campbell, Frank Wagner, Mark Spruce, Daren Ashmore
  • Publication number: 20190162294
    Abstract: A planetary gearing includes a sun gear rotating about a rotation axis and driven by a sun shaft; planet gears driven by the sun gear; a ring gear engaging the planet gears; and a plurality of planet pins that respectively include an outer-side abutment surface having an axially forward end and an axially rearward end. Respectively, one planet pin is arranged inside a planet gear, and the planet pin and the planet gear form a lubricated journal bearing. At an axially forward face side and/or axially rearward face side, each planet gear forms a recess that extends inside the planet gear starting from the face side. The planet pins respectively form a crowning at their abutment surface such that their outer diameter decreases from a maximum outer diameter towards at least one axial end of the abutment surface, and has a minimum at the axial end.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Inventors: Michael NIQUE, Paul GORENZ, Christopher CAMPBELL, Frank WAGNER, Mark SPRUCE, Daren ASHMORE
  • Publication number: 20190162293
    Abstract: A planetary gearing includes a sun gear; a plurality of planet gears, a ring gear; and a plurality of planet pins, wherein respectively one planet pin is arranged inside a planet gear, and the planet pin and the planet gear form a lubricated journal bearing. The planet pin includes an axial bore and an inner surface that comprises an axially forward end and an axially rearward end. The inner diameter of the axial bore of the planet pin varies between the axially forward end and the axially rearward end of the inner surface and has a maximum at least at one axial end. The planet pins respectively form a crowning at their abutment surface such that their outer diameter decreases from a maximum outer diameter towards at least an axial end of the abutment surface, and has a minimum at the axial end.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Inventors: Michael NIQUE, Christopher CAMPBELL, Mark SPRUCE
  • Publication number: 20190162292
    Abstract: A planetary gearing includes a sun gear rotating about a rotation axis and driven by a sun shaft; planet gears driven by the sun gear, each planet gear having an axially forward face side and an axially rearward face side; a ring gear engaging the planet gears; and planet slide bearing pins, wherein respectively one planet slide bearing pin is arranged inside a planet gear forming a lubricated journal bearing. At an axially forward face side and/or axially rearward face side, each planet gear forms a recess that extends inside the planet gear starting from the face side, and the planet slide bearing pins respectively form one crowning at their abutment surface such that their outer diameter decreases from a maximum outer diameter to at least an axial end of the abutment surface and has a minimum at the axial end.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Inventors: Michael NIQUE, Paul GORENZ, Christopher CAMPBELL, Frank WAGNER, Mark SPRUCE, Daren ASHMORE
  • Publication number: 20040073072
    Abstract: Prior to carrying out a gaseous phase chemical reaction, a liquid phase organic compound which is prone to degrade is vaporised at elevated pressures with the aid of a second compound. In one embodiment of the invention, vaporisation is effected by co-vaporising a mixture of the two compounds in a vaporiser. In another embodiment, the first compound is injected into a hot gaseous stream and undergoes atomisation into droplets which then vaporise within the gaseous stream. The second compound is used to assist the atomisation process and/or to sweep atomised droplets of the first compound away from hot surfaces where the first compound would otherwise tend to undergo degradation if the droplets are allowed to reside in contact with such surfaces.
    Type: Application
    Filed: July 18, 2003
    Publication date: April 15, 2004
    Inventors: John David Scott, Charles Brian Blake, Paul Nicholas Ewing, Jeremy Charles Bauser Hunns, Steven Toplis, Andrew Neil Irwin, Mark Spruce
  • Patent number: 6660130
    Abstract: Prior to carrying out a gaseous phase chemical reaction, a liquid phase organic compound which is prone to degrade is vaporized at elevated pressures with the aid of a second compound which together with the organic compound produces a mixture having a boiling point less than that of the organic compound. In one embodiment of the invention, vaporization is effected by co-vaporizing a mixture of the two compounds in a vaporiser. In another embodiment, the first compound is injected into a hot gaseous stream and undergoes atomization into droplets which then vaporize within the gaseous stream. The second compound is used to assist the atomization process and/or to sweep atomized droplets of the first compound away from hot surfaces where the first compound would otherwise tend to undergo degradation if the droplets are allowed to reside in contact with such surfaces.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: December 9, 2003
    Assignee: Ineos Fluor Holdings Limited
    Inventors: John David Scott, Charles Brian Blake, Paul Nicholas Ewing, Jeremy Charles Bauser Hunns, Steven Toplis, Andrew Neil Irwin, Mark Spruce
  • Publication number: 20010012910
    Abstract: Prior to carrying out a gaseous phase chemical reaction, a liquid phase organic compound which is prone to degrade is vaporized at elevated pressures with the aid of a second compound. In one embodiment of the invention, vaporization is effected by co-vaporizing a mixture of the two compounds in a vaporizer. In another embodiment, the first compound is injected into a hot gaseous stream and undergoes atomization into droplets which then vaporize within the gaseous stream. The second compound is used to assist the atomization process and/or to sweep atomized droplets of the first compound away from hot surfaces where the first compound would otherwise tend to undergo degradation if the droplets are allowed to reside in contact with such surfaces.
    Type: Application
    Filed: April 11, 2001
    Publication date: August 9, 2001
    Inventors: John David Scott, Charles Brian Blake, Paul Nicholas Ewing, Jeremy Charles Bauser Hunns, Steven Toplis, Andrew Neil Irwin, Mark Spruce