Patents by Inventor Mark Stan

Mark Stan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9214594
    Abstract: The present disclosure provides a method of manufacturing a solar cell including: providing a first substrate and a second substrate; depositing on the first substrate a sequence of layers of semiconductor material forming a solar cell including a top subcell and a bottom subcell; forming a back metal contact over the bottom subcell; applying a conductive polyimide adhesive to the second substrate; attaching the second substrate on top of the back metal contact; and removing the first substrate to expose the surface of the top subcell.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: December 15, 2015
    Assignee: SolAero Technologies Corp.
    Inventors: Mark A. Stan, Chelsea Mackos, Jeff Steinfeldt
  • Publication number: 20150357501
    Abstract: A multijunction solar cell which includes: an upper first solar subcell having a first band gap; a second solar subcell adjacent to said upper first solar subcell and having a second band gap smaller than said first band gap; a third solar subcell adjacent to said second solar subcell and having a third band gap smaller than said second band gap; a graded interlayer adjacent to said third solar subcell, said graded interlayer having a fourth band gap greater than said third band gap; and a lower fourth solar subcell adjacent to said graded interlayer, said lower fourth solar subcell having a fifth band gap smaller than said third band gap such that said lower fourth solar subcell is lattice mismatched with respect to said third solar subcell.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Daniel DERKACS, Mark STAN
  • Patent number: 9117966
    Abstract: A multijunction solar cell including an upper first solar subcell, and the base-emitter junction of the upper first solar subcell being a homojunction; a second solar subcell adjacent to said first solar subcell; a third solar subcell adjacent to said second solar subcell. A first graded interlayer is provided adjacent to said third solar subcell. A fourth solar subcell is provided adjacent to said first graded interlayer, said fourth subcell is lattice mismatched with respect to said third subcell. A second graded interlayer is provided adjacent to said fourth solar subcell; and a lower fifth solar subcell is provided adjacent to said second graded interlayer, said lower fifth subcell is lattice mismatched with respect to said fourth subcell.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: August 25, 2015
    Assignee: SolAero Technologies Corp.
    Inventors: Arthur Cornfeld, John Spann, Pravin Patel, Mark A. Stan, Benjamin Cho, Paul R. Sharps, Daniel J. Aiken
  • Publication number: 20150090321
    Abstract: A method of forming a multijunction solar cell comprising at least an upper subcell, a middle subcell, and a lower subcell, the method including forming a first alpha layer over said middle solar subcell using a surfactant and dopant including selenium, the first alpha layer configured to prevent threading dislocations from propagating; forming a metamorphic grading interlayer over and directly adjacent to said first alpha layer; forming a second alpha layer using a surfactant and dopant including selenium over and directly adjacent to said grading interlayer to prevent threading dislocations from propagating; and forming a lower solar subcell over said grading interlayer such that said lower solar subcell is lattice mismatched with respect to said middle solar subcell.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: Emcore Solar Power, Inc.
    Inventors: Benjamin Cho, Yong Lin, Pravin Patel, Mark A. Stan, Arthur Cornfeld, Daniel McGlynn, Fred Newman
  • Patent number: 8969712
    Abstract: A multijunction solar cell including an upper first solar subcell having a first band gap; a second solar subcell adjacent to the first solar subcell and having a second band gap smaller than the first band gap; a graded interlayer adjacent to the second solar subcell, the graded interlayer having a third band gap greater than the second band gap; and a third solar subcell adjacent to the graded interlayer, the third subcell having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell. A lower fourth solar subcell is provided adjacent to the third subcell and lattice matched thereto, the lower fourth subcell having a fifth band gap smaller than the fourth band gap.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: March 3, 2015
    Assignee: SolAero Technologies Corp.
    Inventors: Fred Newman, Benjamin Cho, Mark A. Stan, Paul Sharps
  • Patent number: 8957306
    Abstract: A solar cell having a first subcell including a germanium (Ge) substrate having a diffusion region doped with n-type dopants including phosphorus and arsenic, wherein the upper portion of such diffusion region has a higher concentration of phosphorus (P) atoms than arsenic (As) atoms, and a second subcell including a layer of either gallium arsenide (GaAs) or indium gallium arsenide (InGaAs) disposed over the substrate.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: February 17, 2015
    Inventors: Mark A. Stan, Nein Y. Li, Frank A. Spadafora, Hong Q. Hou, Paul R. Sharps, Navid S. Fatemi
  • Publication number: 20150040971
    Abstract: The present disclosure provides a method of manufacturing a solar cell including: providing a first substrate and a second substrate; depositing on the first substrate a sequence of layers of semiconductor material forming a solar cell including a top subcell and a bottom subcell; forming a back metal contact over the bottom subcell; applying a conductive polyimide adhesive to the second substrate; attaching the second substrate on top of the back metal contact; and removing the first substrate to expose the surface of the top subcell.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: Emcore Solar Power, Inc.
    Inventors: Mark A. Stan, Chelsea Mackos, Jeff Steinfeldt
  • Publication number: 20140370648
    Abstract: Inverted metamorphic multijunction solar cells having a heterojunction middle subcell and a graded interlayer, and methods of making same, are disclosed herein. The present disclosure provides a method of manufacturing a solar cell using an MOCVD process, wherein the graded interlayer is composed of (InxGa1-x)y Al1-yAs, and is formed in the MOCVD reactor so that it is compositionally graded to lattice match the middle second subcell on one side and the lower third subcell on the other side, with the values for x and y computed and the composition of the graded interlayer determined so that as the layer is grown in the MOCVD reactor, the band gap of the graded interlayer remains constant at 1.5 eV throughout the thickness of the graded interlayer.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Mark A. Stan, Arthur Cornfeld
  • Patent number: 8895342
    Abstract: Inverted metamorphic multijunction solar cells having a heterojunction middle subcell and a graded interlayer, and methods of making same, are disclosed herein. The present disclosure provides a method of manufacturing a solar cell using an MOCVD process, wherein the graded interlayer is composed of (InxGa1-x)yAl1-yAs, and is formed in the MOCVD reactor so that it is compositionally graded to lattice match the middle second subcell on one side and the lower third subcell on the other side, with the values for x and y computed and the composition of the graded interlayer determined so that as the layer is grown in the MOCVD reactor, the band gap of the graded interlayer remains constant at 1.5 eV throughout the thickness of the graded interlayer.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Emcore Solar Power, Inc.
    Inventors: Mark A. Stan, Arthur Cornfeld
  • Patent number: 8859886
    Abstract: Methods of fabricating multijunction solar cells that may include providing a substrate, and depositing a nucleation first layer over and directly in contact with the substrate. The methods may also include depositing a second layer containing an arsenic dopant over the nucleation layer. The nucleation layer may serve as a diffusion barrier to the arsenic dopant such that diffusion of the arsenic dopant into the substrate is limited in depth by the nucleation layer. The methods may also include depositing a sequence of layers over the second layer forming at least one solar subcell.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: October 14, 2014
    Assignee: Emcore Solar Power, Inc.
    Inventors: Mark A. Stan, Nein Y. Li, Frank A. Spadafora, Hong Q. Hou, Paul R. Sharps, Navid S. Fatemi
  • Publication number: 20140166067
    Abstract: A system for generating electrical power from solar radiation utilizing a thin film III-V compound multijunction semiconductor solar cell mounted on a support in a non-planar configuration is disclosed herein.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Emcore Solar Power, Inc.
    Inventors: Daniel McGlynn, Paul R. Sharps, Arthur Cornfeld, Mark A. Stan
  • Publication number: 20140116500
    Abstract: A method of manufacturing a mounted solar cell by providing a first substrate; depositing on the first substrate a sequence of layers of semiconductor material to form a multijunction solar cell using an MOCVD process; depositing a metal electrode layer on its surface of the layers of semiconductor material; attaching a metallic flexible film comprising a nickel-cobalt ferrous alloy material, or a nickel iron alloy material, directly to the surface of the metal electrode layer of the semiconductor solar cell. The first substrate is removed, and an electrical interconnection member is attached to the solar cell.
    Type: Application
    Filed: March 14, 2013
    Publication date: May 1, 2014
    Applicant: Emcore Solar Power, Inc.
    Inventors: Mark A. Stan, Chelsea Mackos, Paul R. Sharps, Cory Tourino, Arthur Cornfeld
  • Patent number: 8686282
    Abstract: A system for generating electrical power from solar radiation utilizing a thin film III-V compound multijunction semiconductor solar cell mounted on a support in a non-planar configuration is disclosed herein.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: April 1, 2014
    Assignee: Emcore Solar Power, Inc.
    Inventors: Daniel McGlynn, Paul R. Sharps, Arthur Cornfeld, Mark A. Stan
  • Publication number: 20130312818
    Abstract: A method of forming a multijunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell comprising providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on said substrate having a first band gap; forming a second solar subcell over said first subcell having a second band gap smaller than said first band gap; and forming a grading interlayer over said second sub cell having a third band gap larger than said second band gap forming a third solar subcell having a fourth band gap smaller than said second band gap such that said third subcell is lattice mis-matched with respect to said second subcell.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Emcore Solar Power, Inc.
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Publication number: 20130298961
    Abstract: A system for generating electrical power from solar radiation utilizing a thin film III-V compound multijunction semiconductor solar cell mounted on a support in a non-planar configuration is disclosed herein.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Inventors: Daniel McGlynn, Paul R. Sharps, Arthur Cornfeld, Mark A. Stan
  • Patent number: 8536446
    Abstract: Multijunction solar cells that may include a first solar subcell with a first band gap, and a second solar subcell disposed over the first solar subcell and having a second band gap smaller than said first band gap. The solar cells may also include a grading interlayer disposed over the second solar subcell that may include a third band gap greater than the second band gap. The grading interlayer may not include phosphorus. The solar cells may also include a third solar subcell disposed over the interlayer that is lattice mismatched with respect to the second solar subcell. The third solar subcell may have a fourth band gap smaller than the third band gap.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: September 17, 2013
    Assignee: Emcore Solar Power
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Patent number: 8536445
    Abstract: A method of forming a multijunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell comprising providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on said substrate having a first band gap; forming a second solar subcell over said first subcell having a second band gap smaller than said first band gap; and forming a grading interlayer over said second subcell having a third band gap larger than said second band gap forming a third solar subcell having a fourth band gap smaller than said second band gap such that said third subcell is lattice mismatched with respect to said second subcell.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 17, 2013
    Assignee: Emcore Solar Power, Inc.
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Patent number: 8513518
    Abstract: A system for generating electrical power from solar radiation utilizing a thin film III-V compound multijunction semiconductor solar cell mounted on a support in a non-planar configuration.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 20, 2013
    Assignee: Emcore Solar Power, Inc.
    Inventors: Daniel McGlynn, Paul R. Sharps, Arthur Cornfeld, Mark Stan
  • Publication number: 20120247535
    Abstract: A system for the generation of electrical power from sunlight includes a solar cell assembly with at least two sets of solar cells, each of these sets being adapted to a set-specific light frequency spectrum so as to convert light having said set-specific frequency spectrum into electrical energy with an optimized energy conversion efficiency. The system is arranged to respond to changes in the frequency spectrum of the sunlight, for example, in accordance with the time of the day, by causing the sunlight to selectively impinge on one or another of the different sets of solar cells. Thus, an enhanced energy conversion efficiency of the system is obtained.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 4, 2012
    Applicant: Emcore Solar Power, Inc.
    Inventors: Daniel McGlynn, Mark A. Stan
  • Publication number: 20120227797
    Abstract: Inverted metamorphic multijunction solar cells having a heterojunction middle subcell and a graded interlayer, and methods of making same, are disclosed herein. The present disclosure provides a method of manufacturing a solar cell using an MOCVD process, wherein the graded interlayer is composed of (InxGa1-x)y Al1-yAs, and is formed in the MOCVD reactor so that it is compositionally graded to lattice match the middle second subcell on one side and the lower third subcell on the other side, with the values for x and y computed and the composition of the graded interlayer determined so that as the layer is grown in the MOCVD reactor, the band gap of the graded interlayer remains constant at 1.5 eV throughout the thickness of the graded interlayer.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 13, 2012
    Applicant: Emcore Solar Power, Inc.
    Inventors: Mark A. Stan, Arthur Cornfeld