Patents by Inventor Mark Stan

Mark Stan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090229662
    Abstract: A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell, including: providing a substrate having an off-cut of 15° from the (001) plane to the (111)A plane for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a grading interlayer over the second subcell layer, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Applicant: Emcore Corporation
    Inventors: Mark A. Stan, Allen L. Gray, Arthur Cornfeld, Fred Newman
  • Publication number: 20090229658
    Abstract: A method of forming a multifunction solar cell including an upper subcell, a middle subcell, and a lower subcell, the method including: providing a substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a graded interlayer over the second subcell using a non-isoelectronic surfactant such as selenium or tellurium, the graded interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Applicant: Emcore Corporation
    Inventors: Mark A. Stan, Arthur Comfeld, Fred Newman
  • Publication number: 20090188546
    Abstract: A system for generating electrical power from solar radiation utilizing a thin film III-V compound multijunction semiconductor solar cell mounted on a support in a non-planar configuration.
    Type: Application
    Filed: April 2, 2009
    Publication date: July 30, 2009
    Inventors: Daniel McGlynn, Paul R. Sharps, Arthur Comfeld, Mark Stan
  • Publication number: 20090188561
    Abstract: An arrangement including a concentrator lens and a photovoltaic solar cell for terrestrial use for generating electrical power from solar radiation including a multifunction III-V compound semiconductor solar cell with material composition and bandgaps to maximize absorption in the AM1.5 spectral region, and a thickness of one micron or greater so as to be able to produce in excess of 15 watts of DC power with conversion efficiency in excess of 37%. The concentration level of the lens is selected to optimize the efficiency of the solar cell.
    Type: Application
    Filed: April 18, 2008
    Publication date: July 30, 2009
    Applicant: Emcore Corporation
    Inventors: Daniel J. Aiken, Mark A. Stan, Fred Newman
  • Patent number: 7553691
    Abstract: A method and a multijunction solar device having a high band gap heterojunction middle solar cell are disclosed. In one embodiment, a triple-junction solar device includes bottom, middle, and top cells. The bottom cell has a germanium (Ge) substrate and a buffer layer, wherein the buffer layer is disposed over the Ge substrate. The middle cell contains a heterojunction structure, which further includes an emitter layer and a base layer that are disposed over the bottom cell. The top cell contains an emitter layer and a base layer disposed over the middle cell.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: June 30, 2009
    Assignee: Emcore Solar Power, Inc.
    Inventors: Navid Fatemi, Daniel J. Aiken, Mark A. Stan
  • Publication number: 20090155952
    Abstract: A method of forming a multifunction solar cell including an upper subcell, a middle subcell, and a lower subcell, including providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a grading interlayer over the second subcell, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell, wherein at least one of the bases of a solar subcell has an exponentially doped profile.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: Emcore Corporation
    Inventors: Mark A. Stan, Arthur Cornfeld, Vance Ley
  • Publication number: 20090155951
    Abstract: A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell, including providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a grading interlayer over the second subcell, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mis-matched with respect to the second subcell, wherein at least one of the bases of a solar subcell has an exponentially doped profile.
    Type: Application
    Filed: August 7, 2008
    Publication date: June 18, 2009
    Applicant: Emcore Corporation
    Inventors: Mark A. Stan, Arthur Cornfeld, Vance Ley
  • Publication number: 20090078311
    Abstract: A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell, the method including: providing a substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a barrier layer over the second subcell using a surfactant, preferably a isoelectronic surfactant such as bismuth or antimony; forming a graded interlayer over the barrier layer, the graded interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell.
    Type: Application
    Filed: April 14, 2008
    Publication date: March 26, 2009
    Applicant: Emcore Corporation
    Inventors: Mark A. Stan, Arthur Cornfeld, Fred Newman
  • Publication number: 20090078309
    Abstract: A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell, the method including: providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a barrier layer over the second subcell to reduce threading dislocations; forming a grading interlayer over the barrier layer, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 26, 2009
    Applicant: Emcore Corporation
    Inventors: Arthur Cornfeld, Mark A. Stan, Tansen Varghese, Fred Newman
  • Publication number: 20090078310
    Abstract: An inverted metamorphic multifunction solar cell, and its method of fabrication, including an upper subcell, a middle subcell, and a lower subcell, including providing a first substrate for the epitaxial growth of semiconductor material; forming an upper first solar subcell on the substrate having a first bandgap; forming a middle second solar subcell over the first solar subcell having a second bandgap smaller than the first bandgap; forming a graded interlayer over the second subcell, the graded interlayer having a third bandgap greater than the second bandgap; and forming a lower third solar subcell over the graded interlayer having a fourth bandgap smaller than the second bandgap such that the third subcell is lattice mismatched with respect to the second subcell, wherein at least one of the solar subcells has heterojunction base-emitter layers.
    Type: Application
    Filed: January 31, 2008
    Publication date: March 26, 2009
    Applicant: Emcore Corporation
    Inventors: Mark A. Stan, Arthur Cornfeld
  • Publication number: 20080149177
    Abstract: Apparatus and Method for Optimizing the Efficiency of Germanium Junctions in Multi-Junction Solar Cells. In a preferred embodiment, an indium gallium phosphide (InGaP) nucleation layer is disposed between the germanium (Ge) substrate and the overlying dual-junction epilayers for controlling the diffusion depth of the n-doping in the germanium junction. Specifically, by acting as a diffusion barrier to arsenic (As) contained in the overlying epilayers and as a source of n-type dopant for forming the germanium junction, the nucleation layer enables the growth time and temperature in the epilayer device process to be minimized without compromising the integrity of the dual-junction epilayer structure. This in turn allows the arsenic diffusion into the germanium substrate to be optimally controlled by varying the thickness of the nucleation layer.
    Type: Application
    Filed: March 3, 2008
    Publication date: June 26, 2008
    Applicant: EMCORE CORPORATION
    Inventors: Mark A. Stan, Nein Y. Li, Frank A. Spadafora, Hong Q. Hou, Paul R. Sharps, Navid S. Fatemi
  • Publication number: 20080092943
    Abstract: A solar cell includes a semiconductor substrate and a sequence of semiconductor layers disposed over the substrate. The sequence of semiconductor layers includes a semiconductor window layer. The solar cell also includes a semiconductor silicon-containing cap layer over the window layer. The cap layer is spatially separated from the window layer by a semiconductor barrier layer that either includes no silicon or has a silicon concentration that is significantly lower than the silicon concentration of the cap layer.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 24, 2008
    Applicant: EMCORE CORPORATION
    Inventors: Arthur Comfeld, Mark A. Stan, Paul R. Sharps
  • Patent number: 7339109
    Abstract: Apparatus and Method for Optimizing the Efficiency of Germanium Junctions in Multi-Junction Solar Cells. In a preferred embodiment, an indium gallium phosphide (InGaP) nucleation layer is disposed between the germanium (Ge) substrate and the overlying dual-junction epilayers for controlling the diffusion depth of the n-doping in the germanium junction. Specifically, by acting as a diffusion barrier to arsenic (As) contained in the overlying epilayers and as a source of n-type dopant for forming the germanium junction, the nucleation layer enables the growth time and temperature in the epilayer device process to be minimized without compromising the integrity of the dual-junction epilayer structure. This in turn allows the arsenic diffusion into the germanium substrate to be optimally controlled by varying the thickness of the nucleation layer.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: March 4, 2008
    Assignee: Emcore Corporation
    Inventors: Mark A. Stan, Nein Y. Li, Frank A. Spadafora, Hong Q. Hou, Paul R. Sharps, Navid S. Fatemi
  • Publication number: 20080029151
    Abstract: A system for generating electrical power from solar radiation utilizing a III-V compound multijunction semiconductor solar cell; a concentrator for focusing sunlight on the solar cell, including a concave trough-shaped reflector; and a heat spreader connected to the solar cell for cooling the cell.
    Type: Application
    Filed: August 7, 2006
    Publication date: February 7, 2008
    Inventors: Daniel McGlynn, Paul R. Sharps, Arthur Cornfeld, Mark A. Stan
  • Publication number: 20070277873
    Abstract: A method of forming a multijunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell comprising providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on said substrate having a first band gap; forming a second solar subcell over said first subcell having a second band gap smaller than said first band gap; and forming a grading interlayer over said second subcell having a third band gap larger than said second band gap forming a third solar subcell having a fourth band gap smaller than said second band gap such that said third subcell is lattice mismatched with respect to said second subcell.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Publication number: 20070079863
    Abstract: A solar cell array including a first solar cell with an integral bypass diode and an adjacent second solar cell and two discrete metal interconnection members coupling the anode of the bypass diode of the first cell with the anode of the second solar cell.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 12, 2007
    Inventors: Mark Stan, Marvin Clevenger, Paul Sharps
  • Publication number: 20060185725
    Abstract: A method and a multijunction solar device having a high band gap heterojunction middle solar cell are disclosed. In one embodiment, a triple-junction solar device includes bottom, middle, and top cells. The bottom cell has a germanium (Ge) substrate and a buffer layer, wherein the buffer layer is disposed over the Ge substrate. The middle cell contains a heterojunction structure, which further includes an emitter layer and a base layer that are disposed over the bottom cell. The top cell contains an emitter layer and a base layer disposed over the middle cell.
    Type: Application
    Filed: April 10, 2006
    Publication date: August 24, 2006
    Inventors: Navid Fatemi, Daniel Aiken, Mark Stan
  • Patent number: 7071407
    Abstract: A method and a multijunction solar device having a high band gap heterojunction middle solar cell are disclosed. In one embodiment, a triple-junction solar device includes bottom, middle, and top cells. The bottom cell has a germanium (Ge) substrate and a buffer layer, wherein the buffer layer is disposed over the Ge substrate. The middle cell contains a heterojunction structure, which further includes an emitter layer and a base layer that are disposed over the bottom cell. The top cell contains an emitter layer and a base layer disposed over the middle cell.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: July 4, 2006
    Assignee: Emcore Corporation
    Inventors: Navid Faterni, Daniel J. Aiken, Mark A. Stan
  • Publication number: 20060042684
    Abstract: A solar cell having a multijunction solar cell structure with a bypass diode is disclosed. The bypass diode provides a reverse bias protection for the multijunction solar cell structure. In one embodiment, the multijunction solar cell structure includes a substrate, a bottom cell, a middle cell, a top cell, a bypass diode, a lateral conduction layer, and a shunt. The lateral conduction layer is deposited over the top cell. The bypass diode is deposited over the lateral conduction layer. One side of the shunt is connected to the substrate and another side of the shunt is connected to the lateral conduction layer. In another embodiment, the bypass diode contains an i-layer to enhance the diode performance.
    Type: Application
    Filed: May 6, 2005
    Publication date: March 2, 2006
    Inventors: Paul Sharps, Daniel Aiken, Doug Collins, Mark Stan
  • Publication number: 20050227464
    Abstract: In a preferred embodiment, an indium gallium phosphide (InGaP) nucleation layer is disposed between the germanium (Ge) substrate and the overlying dual-junction epilayers for controlling the diffusion depth of the n-doping in the germanium junction. Specifically, by acting as a diffusion barrier to arsenic (As) contained in the overlying epilayers and as a source of n-type dopant for forming the germanium junction, the nucleation layer enables the growth time and temperature in the epilayer device process to be minimized without compromising the integrity of the dual-junction epilayer structure. This in turn allows the arsenic diffusion into the germanium substrate to be optimally controlled by varying the thickness of the nucleation layer. An active germanium junction formed in accordance with the present invention has a typical diffused junction depth that is ? to ½ of that achievable in prior art devices.
    Type: Application
    Filed: June 2, 2005
    Publication date: October 13, 2005
    Inventors: Mark Stan, Nein Li, Frank Spadafora, Hong Hou, Paul Sharps, Navid Fatemi