Patents by Inventor Mark Stemmle

Mark Stemmle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10944250
    Abstract: A method is provided for setting up a transmission link for electrical energy, in which at least one superconductive cable and a cryostat surrounding the same are used, the cryostat having two metal tubes arranged concentrically in relation to one another, between which a vacuum insulation is provided. The ends of the cryostat in the assembled state as well as the superconductive cable located in the same are attached on fixed parts of the transmission link. At least at one end of the cryostat, there is gaplessly connected to the same a tube body which is bent by an angle of at least 180° and likewise consists of two metal tubes arranged concentrically in relation to one another, between which a vacuum insulation is provided. The superconductive cable protruding from the cryostat is arranged in the tube body at room temperature in such a way that it runs at least in the direct proximity of the wall of the inner tube of the tube body that has the greater bending radius.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: March 9, 2021
    Assignee: NEXANS
    Inventors: Mark Stemmle, Stephan Lange
  • Patent number: 10453591
    Abstract: An end closure for a superconductive electric cable which has at least one superconductive conductor which is surrounded by a tubular cryostat serving for conducting a cooling agent, which at its end is surrounded by a housing. The housing (G) has two walls (7, 8) which are separated from each other by an intermediate space (9) and having insulating material, wherein a thermal insulation containing gas is placed in the intermediate space. The pressure in the intermediate space (9) of the housing (G) is adjusted to a value of between 10?9 mbar and 1000 mbar and, connected to the intermediate space (9) are a pressure measuring device (12) and a vacuum pump (11) which serve for adjusting the pressure prevailing in the intermediate space (9) of the housing (G).
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: October 22, 2019
    Assignee: NEXANS
    Inventors: Erik Marzahn, Mark Stemmle
  • Publication number: 20190260194
    Abstract: A method is provided for setting up a transmission link for electrical energy, in which at least one superconductive cable and a cryostat surrounding the same are used, the cryostat having two metal tubes arranged concentrically in relation to one another, between which a vacuum insulation is provided. The ends of the cryostat in the assembled state as well as the superconductive cable located in the same are attached on fixed parts of the transmission link. At least at one end of the cryostat, there is gaplessly connected to the same a tube body which is bent by an angle of at least 180° and likewise consists of two metal tubes arranged concentrically in relation to one another, between which a vacuum insulation is provided. The superconductive cable protruding from the cryostat is arranged in the tube body at room temperature in such a way that it runs at least in the direct proximity of the wall of the inner tube of the tube body that has the greater bending radius.
    Type: Application
    Filed: May 31, 2017
    Publication date: August 22, 2019
    Applicant: Nexans
    Inventors: Mark STEMMLE, Stephan LANGE
  • Patent number: 10332664
    Abstract: An arrangement for current limitation which is suitable for integration in a power supply serving network and which has a superconductive conductor, which is attached to at least one plate like support composed of insulation material. On the at least one support three separate from each other superconductive conductors in spiral form windings parallel to each other running to a separate connection is arranged on the phases of a three phase alternating current network. The support equipped with the phase conductors is built in to a container constructed as a cryostat.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: June 25, 2019
    Assignee: NEXANS
    Inventors: Mark Stemmle, Beate West
  • Patent number: 10218165
    Abstract: The invention specifies a termination (1) for a superconducting cable (2) which is arranged in a tubular cryostat, which serves for carrying a coolant, and has at least one electrical conductor. The termination (1) has an inner sheath (3), in which one end of the cable (2) is arranged in a coolant, and an outer sheath (4), wherein the sheaths (3, 4) are composed of electrically insulating material and insulating material is arranged in an existing intermediate space (5) between the inner and the outer sheath. The inner sheath (3) is connected to the cryostat, and the termination (1) is arranged vertically in the assembly position such that a lower part (C) of the inner and the outer sheath (3, 4) is connected to earth and an upper part (A) of the inner and the outer sheath (3, 4) is connected to high-voltage potential in the operating state. At the respective upper end, the inner sheath (3) is closed off by a first bursting disc (3a) and the outer sheath (4) is closed off by a second bursting disc (4a).
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: February 26, 2019
    Assignee: NEXANS
    Inventors: Mark Stemmle, Waldemar Pedde, Nicolas Lallouet, Sébastien Delplace
  • Patent number: 10151521
    Abstract: A method for cooling a plant for superconductive cables is provided, where the plant includes two thermally insulated end closures (1, 2) and at least one thermally insulated, tubular cryostat (3) arranged between the end closures, in which at least one superconductive cable is arranged. Liquid nitrogen contained in a cooling agent supply is pumped by means of a pump (9) through a first end closure and the cryostat to a second end closure. At least one vacuum insulated tank (7) is used for the cooling agent supply, where the tank (7) contains nitrogen at operating temperature and out of which the nitrogen is pumped. For making available a quantity of liquid nitrogen necessary for operating the plant, the supply of liquid nitrogen contained in the tank (7) is supplemented during operation or is switched over to another tank (10) containing liquid nitrogen.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: December 11, 2018
    Assignee: NEXANS
    Inventors: Klaus Schippl, Mark Stemmle, Frank Schmidt
  • Patent number: 10133242
    Abstract: A method for transmitting electrical energy is proposed in which between two electrical units electrical current is transmitted by means of a superconductive cable system (4). The two ends of the superconductive cable system (4) are each connected in a current conducting manner to one of the electrical units. A normally conductive cable system. (5) is arranged parallel to the superconductive cable system (4). The function of the superconductive cable system (4) is monitored by a control unit (10). During normal operation. only one end of the normally conductive cable system (5) is connected in a voltage conducting manner to one of the electrical units.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 20, 2018
    Assignee: NEXANS
    Inventors: Mark Stemmle, Beate West
  • Publication number: 20180331529
    Abstract: The invention specifies a termination (1) for a superconducting cable (2) which is arranged in a tubular cryostat, which serves for carrying a coolant, and has at least one electrical conductor. The termination (1) has an inner sheath (3), in which one end of the cable (2) is arranged in a coolant, and an outer sheath (4), wherein the sheaths (3, 4) are composed of electrically insulating material and insulating material is arranged in an existing intermediate space (5) between the inner and the outer sheath. The inner sheath (3) is connected to the cryostat, and the termination (1) is arranged vertically in the assembly position such that a lower part (C) of the inner and the outer sheath (3, 4) is connected to earth and an upper part (A) of the inner and the outer sheath (3, 4) is connected to high-voltage potential in the operating state. At the respective upper end, the inner sheath (3) is closed off by a first bursting disc (3a) and the outer sheath (4) is closed off by a second bursting disc (4a).
    Type: Application
    Filed: April 2, 2018
    Publication date: November 15, 2018
    Inventors: Mark STEMMLE, Waldemar PEDDE, Nicolas LALLOUET, Sébastien DELPLACE
  • Patent number: 10062479
    Abstract: A method for constructing a superconductive cable system is proposed. Using this method, at least one superconductive cable (2) is mounted in a tubular cryostat (3) serving for guiding a cooling agent by means of which the cryostat (3) equipped with the cable (2) and wherein the cable (2) and the cryostat (3) are transported to the placement location and both ends are connected to units. The cable (2) is mounted in a cryostat (3) which at both axial ends (3b, 3c) protrudes beyond the cable (2). The unit of cable (2) and cryostat (3) is transported to the placement location. The ends (3b, 3c) protruding beyond the cable (2) are cut to a predetermined length. The superconductive cable (2) and the cryostat (3) are subsequently connected to the units.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: August 28, 2018
    Assignee: NEXANS
    Inventors: Mark Stemmle, Erik Marzahn
  • Patent number: 9806511
    Abstract: A method is provided for manufacturing a superconductive cable equipped with means for compensating length changes caused by temperature changes which occur when the cable is cooled from room temperature to work temperature and vice-versa. A superconductive cable (SK) with a tubular, central carrier (1) is used which is surrounded by at least one superconductive conductor. Arranged in the carrier (1) is at least one tension-proof strand (2) arranged over the entire length of the carrier (1). Cable (SK) is initially wound, including strand (2), at room temperature onto a coil (SP). Subsequently, the strand (2) is immovably fastened to the two ends of the cable (SK) and the cable (SK) is subsequently wound off the coil (SP).
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 31, 2017
    Assignee: NEXANS
    Inventors: Erik Marzahn, Mark Stemmle
  • Patent number: 9735562
    Abstract: A termination unit (1) for a superconducting cable (3), has an internal electrically insulating envelope (2) containing the phase conductors (3A, 3B, 3C) of the cable (3) in a cryogenic fluid. The internal envelope (2) has, for each phase conductor (3A, 3B, 3C), one first electrical connector (6A, 6B, 6C) connected to the corresponding phase conductor (3A, 3B, 3C) and protruding from the internal envelope (2). The termination unit (1) further has an electrically conductive, grounded casing (7) surrounding the internal envelope (2) and the first electrical connectors (6A, 6B, 6C), the grounded casing (7) comprising one bushing (8A, 8B, 8C) for each one of the first electrical connectors (6A, 6B, 6C), each bushing (8A, 8B, 8C) being connected to one of the first electrical connectors (6A, 6B, 6C) by a second electrical connector (9A, 9B, 9C) and being adapted to transmit voltage and current from its associated phase conductor (3A, 3B, 3C).
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: August 15, 2017
    Assignee: NEXANS
    Inventors: Nicolas Lallouet, Sebastien Delplace, Mark Stemmle, Erik Marzahn
  • Patent number: 9685260
    Abstract: A method of cooling at least one superconductive cable is disclosed which is arranged in a cryostat having at least one thermally insulated pipe with a free space surrounded by the pipe, wherein the cable and at least one tubular structure are arranged in the free space, and wherein a cooling agent is conducted through the free space from a feeding point located at one end to a distal end. The cooling agent is conducted through the cryostat and the tubular structure exclusively in one direction of the cable until it reaches its temperature of operation and is discharged to the outside at the distal end. After reaching the temperature of operation, the cooling agent is returned from the distal end of the arrangement through the tubular structure to the feeding point.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: June 20, 2017
    Assignee: NEXANS
    Inventors: Erik Marzahn, Mark Stemmle, Beate West
  • Publication number: 20170025209
    Abstract: An arrangement for current limitation which is suitable for integration in a power supply serving network and which has a superconductive conductor, which is attached to at least one plate like support composed of insulation material. On the at least one support three separate from each other superconductive conductors in spiral form windings parallel to each other running to a separate connection is arranged on the phases of a three phase alternating current network. The support equipped with the phase conductors is built in to a container constructed as a cryostat.
    Type: Application
    Filed: July 19, 2016
    Publication date: January 26, 2017
    Inventors: Mark Stemmle, Beate West
  • Patent number: 9496072
    Abstract: An arrangement is specified having a superconducting cable (SK) which comprises a superconducting conductor (1) and a superconducting screen (3) which concentrically surrounds the same with the interposition of a dielectric (2). The cable (SK) is surrounded by a cryostat (KR) enclosing a free space (FR) for a coolant to be passed through, which cryostat (KR) which cryostat comprises two metallic tubes (4, 5) which are arranged concentrically with respect to one another and between which vacuum insulation is arranged. The screen (3) is composed of a superconducting material whose electrical resistance value in the normally conductive state is greater by a factor of at least 50 than the electrical resistance value of the material used for the conductor (1) in the normally conductive state.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: November 15, 2016
    Assignee: Nexans
    Inventors: Rainer Soika, Mark Stemmle
  • Publication number: 20160261103
    Abstract: A termination unit (1) for a superconducting cable (3), has an internal electrically insulating envelope (2) containing the phase conductors (3A, 3B, 3C) of the cable (3) in a cryogenic fluid. The internal envelope (2) has, for each phase conductor (3A, 3B, 3C), one first electrical connector (6A, 6B, 6C) connected to the corresponding phase conductor (3A, 3B, 3C) and protruding from the internal envelope (2). The termination unit (1) further has an electrically conductive, grounded casing (7) surrounding the internal envelope (2) and the first electrical connectors (6A, 6B, 6C), the grounded casing (7) comprising one bushing (8A, 8B, 8C) for each one of the first electrical connectors (6A, 6B, 6C), each bushing (8A, 8B, 8C) being connected to one of the first electrical connectors (6A, 6B, 6C) by a second electrical connector (9A, 9B, 9C) and being adapted to transmit voltage and current from its associated phase conductor (3A, 3B, 3C).
    Type: Application
    Filed: February 17, 2016
    Publication date: September 8, 2016
    Inventors: Nicolas Lallouet, Sebastien Delplace, Mark Stemmle, Erik Marzahn
  • Patent number: 9418777
    Abstract: A method is disclosed for electrically conductively connecting two superconductive cables. The ends of the two cables are arranged next to each other and parallel to one another, in such a way that their free ends point in the opposite direction, and their conductors are located at least approximately on the same level next to each other. Two conductors of the two cables are electrically conductively connected to each other through electrical contact elements (10, 11, 12). The screens (6) of the two cables (1, 2) are connected through by separate contact elements (13, 14, 15) and the two cable ends are treated in this manner for constructing a transmission length for electrical energy are arranged jointly in a housing (16) of a cryostat so that during operation of the transmission length, a flowable cooling agent with electrically insulating properties flows through a housing (16) of a cryostat.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: August 16, 2016
    Assignee: NEXANS
    Inventors: Mark Stemmle, Frank Schmidt
  • Publication number: 20160071631
    Abstract: An end closure for a superconductive electric cable which has at least one superconductive conductor which is surrounded by a tubular cryostat serving for conducting a cooling agent, which at its end is surrounded by a housing. The housing (G) has two walls (7, 8) which are separated from each other by an intermediate space (9) and having insulating material, wherein a thermal insulation containing gas is placed in the intermediate space. The pressure in the intermediate space (9) of the housing (G) is adjusted to a value of between 10?9 mbar and 1000 mbar and, connected to the intermediate space (9) are a pressure measuring device (12) and a vacuum pump (11) which serve for adjusting the pressure prevailing in the intermediate space (9) of the housing (G).
    Type: Application
    Filed: February 26, 2015
    Publication date: March 10, 2016
    Inventors: Erik Marzahn, Mark Stemmle
  • Publication number: 20160026159
    Abstract: A method for transmitting electrical energy is proposed in which between two electrical units electrical current is transmitted by means of a superconductive cable system (4). The two ends of the superconductive cable system (4) are each connected in a current conducting manner to one of the electrical units. A normally conductive cable system. (5) is arranged parallel to the superconductive cable system (4). The function of the superconductive cable system (4) is monitored by a control unit (10). During normal operation. only one end of the normally conductive cable system (5) is connected in a voltage conducting manner to one of the electrical units.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 28, 2016
    Inventors: Mark Stemmle, Beate West
  • Publication number: 20150371739
    Abstract: A method for constructing a superconductive cable system is proposed. Using this method, at least one superconductive cable (2) is mounted in a tubular cryostat (3) serving for guiding a cooling agent by means of which the cryostat (3) equipped with the cable (2) and wherein the cable (2) and the cryostat (3) are transported to the placement location and both. ends are connected to units. The cable (2) is mounted in a cryostat (3) which at both axial ends (3b, 3c) protrudes beyond the cryostat (3). The unit of cable and cryostat (3) is transported to the placement location. The ends (3b, 3c) protruding beyond the cable (2) are cut to a predetermined length. The superconductive cable (2) and the cryostat (3) are subsequently connected to the units.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Mark Stemmle, Erik Marzahn
  • Patent number: 9202611
    Abstract: An arrangement is provided with three superconductive phase conductors each with a conductor, a dielectric and an electrically conductive screen surrounding the dielectric. The three phase conductors are arranged in a cryostat which conducts a cooling agent and which is made from a pipe with a thermal insulation. The screens of each of the conductors are for forming three, or a whole number multiple of three, sections arranged successively in the longitudinal direction by partial screens in a first, a second and a third section at two locations or at two locations spaced apart from each other. The partial screen of a first section of each phase conductor is electrically conductively connected in series to the partial screens of the second section and further to the third section of the two other phase conductors.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: December 1, 2015
    Assignee: NEXANS
    Inventors: Mark Stemmle, Beate West