Patents by Inventor Mark T. DeMeuse
Mark T. DeMeuse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240097277Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: November 16, 2023Publication date: March 21, 2024Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Patent number: 11862814Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: GrantFiled: January 21, 2023Date of Patent: January 2, 2024Assignee: Daramic, LLCInventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Publication number: 20230155247Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: January 21, 2023Publication date: May 18, 2023Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Patent number: 11563256Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: GrantFiled: October 3, 2017Date of Patent: January 24, 2023Assignee: Celgard, LLCInventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Patent number: 10249863Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: GrantFiled: January 26, 2017Date of Patent: April 2, 2019Assignee: Daramic, LLCInventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
-
Publication number: 20180029276Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: October 3, 2017Publication date: February 1, 2018Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Patent number: 9725566Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: GrantFiled: November 22, 2005Date of Patent: August 8, 2017Assignee: Daramic, LLCInventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, Kevin J. Whear
-
Publication number: 20170207434Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: January 26, 2017Publication date: July 20, 2017Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
-
Publication number: 20170072610Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: November 7, 2016Publication date: March 16, 2017Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Patent number: 8784510Abstract: A method for producing an ultracapacitor comprises the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.Type: GrantFiled: August 23, 2011Date of Patent: July 22, 2014Assignee: Daramic LLCInventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
-
Publication number: 20110304951Abstract: A method for producing an ultracapacitor comprises the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.Type: ApplicationFiled: August 23, 2011Publication date: December 15, 2011Inventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
-
Patent number: 8027147Abstract: A method for producing an ultracapacitor includes the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.Type: GrantFiled: January 29, 2008Date of Patent: September 27, 2011Assignee: Daramic LLCInventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
-
Patent number: 7682536Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: GrantFiled: August 27, 2008Date of Patent: March 23, 2010Assignee: Daramic LLCInventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Publication number: 20090305127Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: November 22, 2005Publication date: December 10, 2009Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, Kevin J. Whear
-
Patent number: 7604687Abstract: A gas filtration media comprises a microporous membrane. The microporous membrane includes an ultrahigh molecular weight polyethylene (UHMWPE), an inorganic material, wherein the ratio of inorganic material to polymer is in the range of 4:1 to 1:4, and less than 30% by weight of the membrane being a processing oil.Type: GrantFiled: June 1, 2006Date of Patent: October 20, 2009Assignee: Daramic LLCInventors: Eric H. Miller, Joseph G. Yaritz, Karl Froelich, Mark T. Demeuse
-
Publication number: 20080315447Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: August 27, 2008Publication date: December 25, 2008Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Publication number: 20080300332Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: ApplicationFiled: September 13, 2007Publication date: December 4, 2008Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Patent number: 7445735Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.Type: GrantFiled: December 7, 2004Date of Patent: November 4, 2008Assignee: Daramic LLCInventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
-
Publication number: 20080180882Abstract: A method for producing an ultracapacitor comprises the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.Type: ApplicationFiled: January 29, 2008Publication date: July 31, 2008Inventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
-
Patent number: 6514625Abstract: Oriented polyolefin films are prepared with blends of a high crystalline polypropylene and an ethylene/propylene copolymer having less than 10%, by weight, of ethylene. These films, in a preferred embodiment, exhibit higher oxygen and moisture vapor transmission properties than do unmodified polypropylene. In addition, these films have low haze. This combination of properties make the films useful in modified atmosphere packaging applications for fresh produce and flowers.Type: GrantFiled: November 28, 2000Date of Patent: February 4, 2003Assignee: Applied Extrusion Technologies, Inc.Inventor: Mark T. DeMeuse