Patents by Inventor Mark T. DeMeuse

Mark T. DeMeuse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097277
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 21, 2024
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Patent number: 11862814
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: January 21, 2023
    Date of Patent: January 2, 2024
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Publication number: 20230155247
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: January 21, 2023
    Publication date: May 18, 2023
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Patent number: 11563256
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: January 24, 2023
    Assignee: Celgard, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Patent number: 10249863
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: April 2, 2019
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
  • Publication number: 20180029276
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 1, 2018
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Patent number: 9725566
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 8, 2017
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, Kevin J. Whear
  • Publication number: 20170207434
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 20, 2017
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
  • Publication number: 20170072610
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: November 7, 2016
    Publication date: March 16, 2017
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Patent number: 8784510
    Abstract: A method for producing an ultracapacitor comprises the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: July 22, 2014
    Assignee: Daramic LLC
    Inventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
  • Publication number: 20110304951
    Abstract: A method for producing an ultracapacitor comprises the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Inventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
  • Patent number: 8027147
    Abstract: A method for producing an ultracapacitor includes the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: September 27, 2011
    Assignee: Daramic LLC
    Inventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
  • Patent number: 7682536
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 23, 2010
    Assignee: Daramic LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Publication number: 20090305127
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: November 22, 2005
    Publication date: December 10, 2009
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, Kevin J. Whear
  • Patent number: 7604687
    Abstract: A gas filtration media comprises a microporous membrane. The microporous membrane includes an ultrahigh molecular weight polyethylene (UHMWPE), an inorganic material, wherein the ratio of inorganic material to polymer is in the range of 4:1 to 1:4, and less than 30% by weight of the membrane being a processing oil.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: October 20, 2009
    Assignee: Daramic LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Karl Froelich, Mark T. Demeuse
  • Publication number: 20080315447
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: August 27, 2008
    Publication date: December 25, 2008
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Publication number: 20080300332
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: September 13, 2007
    Publication date: December 4, 2008
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Patent number: 7445735
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: November 4, 2008
    Assignee: Daramic LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Publication number: 20080180882
    Abstract: A method for producing an ultracapacitor comprises the steps of: providing a negative porous electrode in contact with a negative conducting plate; providing a positive porous electrode in contact with a positive conducting plate; providing an ultracapacitor separator being a microporous material that separates the negative porous electrode from the positive porous electrode; providing an electrolytic solution that impregnates the negative porous electrode, the positive porous electrode, and the ultracapacitor separator; and curing the ultracapacitor at a temperature of at least 200° C.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 31, 2008
    Inventors: Eric H. Miller, Kevin Whear, Mark T. Demeuse
  • Patent number: 6514625
    Abstract: Oriented polyolefin films are prepared with blends of a high crystalline polypropylene and an ethylene/propylene copolymer having less than 10%, by weight, of ethylene. These films, in a preferred embodiment, exhibit higher oxygen and moisture vapor transmission properties than do unmodified polypropylene. In addition, these films have low haze. This combination of properties make the films useful in modified atmosphere packaging applications for fresh produce and flowers.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: February 4, 2003
    Assignee: Applied Extrusion Technologies, Inc.
    Inventor: Mark T. DeMeuse