Patents by Inventor Mark T. Frey

Mark T. Frey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130166213
    Abstract: A logging tool having a plurality of spatially separated antennas is provided and used to make propagation-style measurements in a formation. Tensors are formed using the propagation-style measurements and one or more quantities are computed using the tensors. A formation evaluation is performed using the computed quantities. The formation evaluation determines a formation property or parameter such as horizontal resistivity, vertical resistivity, relative dip, azimuthal dip, bed boundary location, or bed thickness. The computed quantities may include compensated phase shift resistivity, compensated attenuation resistivity, symmetrized phase shift resistivity, symmetrized attenuation resistivity, anti-symmetrized phase shift resistivity, and anti-symmetrized attenuation resistivity. The measurements may be corrected for antenna gain errors and an air calibration may be performed.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Inventors: Dean M. Homan, Mark T. Frey, Sergiv Kryukov
  • Patent number: 8400160
    Abstract: A combined resistivity tool incorporating both induction/propagation antennas and lateral resistivity antennas disposed in recesses of downhole tubulars, in which a lateral resistivity antenna includes an insulating base layer disposed in the recess; a toroidal antenna disposed over the insulating base layer; and a shield disposed over the recess.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: March 19, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Mark A. Fredette, James Stephen Hall, Mark T. Frey, Dominique Dion
  • Publication number: 20120111561
    Abstract: A method detects at least one phase of multiphase borehole fluids within a borehole. The method has a step of providing coiled tubing connected to a top end of a bottom hole assembly having a sensor configured to detect a property associated with the multiphase borehole fluids. Further, the method has a step of positioning the sensor adjacent to a first phase of the multiphase borehole fluids by rotating the bottom hole assembly or a portion of the bottom hole assembly. Moreover, the method has the steps of detecting a first measurement with the sensor as the sensor rotates and determining a fractional amount of at least one phase of the multiphase borehole fluids.
    Type: Application
    Filed: October 3, 2011
    Publication date: May 10, 2012
    Inventors: Mark T. Frey, Keith A. Moriarty, Devin Rock, Robert Utter
  • Publication number: 20120081122
    Abstract: An electromagnetic well logging instrument includes an instrument housing, at least one transmitter coil disposed on the housing and at least one receiver coil disposed on the housing. At least one of the transmitter and receiver coils is formed from a combination solenoidal (axial) and saddle coils. The net dipole moment direction of the combined coil is determined by selecting the relative turn-areas of the saddle and solenoidal coil. The combined coil can be formed from a single wire wound to have both a longitudinal magnetic dipole moment and a transverse magnetic dipole moment with respect to a longitudinal axis of the housing.
    Type: Application
    Filed: May 31, 2011
    Publication date: April 5, 2012
    Inventor: MARK T. FREY
  • Publication number: 20110316542
    Abstract: An LWD tool with a tubular having a longitudinal axis and a set of co-located antennas carried in a recess on the tubular is disclosed. The tool carries a shield having an open slot configuration and circumferentially surrounds the set of co-located antennas, a first end of the shield being mechanically and electrically connected to the tubular. The tool also includes an insulating ring carried on the tubular, at least a portion of the insulating ring being disposed between the tubular and a second end of the shield.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Inventors: Mark T. Frey, Dean M. Homan
  • Patent number: 7916092
    Abstract: An antenna for an electromagnetic tool having a longitudinal axis and a core. The antenna includes a flexible dielectric substrate flexibly conformed about the core and an electrical conductor disposed on the dielectric substrate. The electrical conductor is disposed on the substrate such that the antenna has a dipole moment having any desired direction relative to the longitudinal axis of the tool.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 29, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Dean M. Homan, Mark T. Frey
  • Patent number: 7692428
    Abstract: Systems and methods for downhole communication and measurement utilizing an improved metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a run-in tool. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Hydraulic isolation between the interior and exterior of the tubular is provided by pressure barrier means at the slotted stations. Sensors and/or sources are mounted on the run-in tool, which is adapted for transmission through a drill string to engage within the tubular in alignment with the slotted stations. A run-in tool configuration includes a modulator for real-time wireless communication with the surface and/or remote downhole tools. A tubular and run-in tool configuration also includes inductive couplers for wireless signal data transfer. A method for measuring a formation characteristic utilizing a run-in tool adapted with an interchangeable end segment for multi-mode downhole transport.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: April 6, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Brian Clark, John Hunka, Mark T. Frey, David L. Smith, Dhananjay Ramaswamy, Anthony Collins, Stephen Bonner
  • Publication number: 20090179648
    Abstract: A combined resistivity tool incorporating both induction/propagation antennas and lateral resistivity antennas disposed in recesses of downhole tubulars, in which a lateral resistivity antenna includes an insulating base layer disposed in the recess; a toroidal antenna disposed over the insulating base layer; and a shield disposed over the recess.
    Type: Application
    Filed: March 20, 2009
    Publication date: July 16, 2009
    Inventors: Mark A. Fredette, James Stephen Hall, Mark T. Frey, Dominique Dion
  • Patent number: 7525315
    Abstract: A combined resistivity tool incorporating both induction/propagation antennas and lateral resistivity antennas disposed in recesses of downhole tubulars, in which a lateral resistivity antenna includes an insulating base layer disposed in the recess; a toroidal antenna disposed over the insulating base layer; and a shield disposed over the recess.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: April 28, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Mark A. Fredette, James Stephen Hall, Mark T. Frey, Dominique Dion
  • Publication number: 20080030415
    Abstract: An antenna for an electromagnetic tool having a longitudinal axis and a core. The antenna includes a flexible dielectric substrate flexibly conformed about the core and an electrical conductor disposed on the dielectric substrate. The electrical conductor is disposed on the substrate such that the antenna has a dipole moment having any desired direction relative to the longitudinal axis of the tool.
    Type: Application
    Filed: August 2, 2006
    Publication date: February 7, 2008
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Dean M. Homan, Mark T. Frey
  • Patent number: 7279889
    Abstract: By breaking the calibration into two parts—one calibration offset being associated with a first portion, and the other calibration offset being associated with a second portion, it is possible to combine the various calibration offsets for a particular first portion mated with a particular second portion. Thus, any one of a number of downhole first portions can be combined, on a session-by-session basis, with any number of second portions. In one embodiment, the second portion calibration is specific to the particular second portion, and in another embodiment the calibration for a second portion is a fixed calibration offset that is based on a second portion type, such as the second portion size.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 9, 2007
    Assignee: Schlumberger Technology Corporation
    Inventor: Mark T. Frey
  • Patent number: 7187297
    Abstract: Systems and methods for downhole communication and measurement utilizing an improved metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a run-in tool. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Hydraulic isolation between the interior and exterior of the tubular is provided by pressure barrier means at the slotted stations. Sensors and/or sources are mounted on the run-in tool, which is adapted for transmission through a drill string to engage within the tubular in alignment with the slotted stations. A run-in tool configuration includes a modulator for real-time wireless communication with the surface and/or remote downhole tools. A tubular and run-in tool configuration also includes inductive couplers for wireless signal data transfer. A method for measuring a formation characteristic utilizing a run-in tool adapted with an interchangeable end segment for multi-mode downhole transport.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: March 6, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: Brian Clark, John Hunka, Mark T. Frey, David L. Smith, Dhananjay Ramaswamy, Anthony Collins, Stephen Bonner
  • Patent number: 6975243
    Abstract: Systems and methods for downhole communication and measurement utilizing an improved metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a run-in tool. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Hydraulic isolation between the interior and exterior of the tubular is provided by pressure barrier means at the slotted stations. Sensors and/or sources are mounted on the run-in tool, which is adapted for transmission through a drill string to engage within the tubular in alignment with the slotted stations. A run-in tool configuration includes a modulator for real-time wireless communication with the surface and/or remote downhole tools. A tubular and run-in tool configuration also includes inductive couplers for wireless signal data transfer. A method for measuring a formation characteristic utilizing a run-in tool adapted with an interchangeable end segment for multi-mode downhole transport.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: December 13, 2005
    Assignee: Schlumberger Technology Corporation
    Inventors: Brian Clark, John Hunka, Mark T. Frey, David L. Smith, Dhananjay Ramaswamy, Anthony Collins, Stephen Bonner
  • Patent number: 6903660
    Abstract: Systems and methods for downhole communication and measurement utilizing an improved metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a run-in tool. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Hydraulic isolation between the interior and exterior of the tubular is provided by pressure barrier means at the slotted stations. Sensors and/or sources are mounted on the run-in tool, which is adapted for transmission through a drill string to engage within the tubular in alignment with the slotted stations. A run-in tool configuration includes a modulator for real-time wireless communication with the surface and/or remote downhole tools. A tubular and run-in tool configuration also includes inductive couplers for wireless signal data transfer. A method for measuring a formation characteristic utilizing a run-in tool adapted with an interchangeable end segment for multi-mode downhole transport.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 7, 2005
    Assignee: Schlumberger Technology Corporation
    Inventors: Brian Clark, John Hunka, Mark T. Frey, David L. Smith, Dhananjay Ramaswamy, Anthony Collins, Stephen Bonner
  • Patent number: 6885308
    Abstract: Method and system for subsurface logging utilizing a modified tubular having an elongated body with tubular walls and a central bore adapted to receive a support member. The tubular including slotted stations to provide through-tubular signal passage. Pressure barrier means provide hydraulic isolation at the slotted stations. The support member is equipped with sources or sensors and adapted for engagement within the tubular. The tubular and support member are implemented in combination with retrievable and re-seatable MWD apparatus.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: April 26, 2005
    Assignee: Schlumberger Technology Corporation
    Inventors: David L. Smith, Mark T. Frey
  • Patent number: 6836218
    Abstract: Method and system for subsurface logging utilizing a modified metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a support member. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Pressure barrier means provide hydraulic isolation at the slotted stations. The support member is equipped with various sources and sensors, including an antenna adapted to generate a magnetic dipole moment with a transverse or controllable orientation, and adapted for engagement within the tubular. The apparatus is suitable for LWT, LWD, and TLC logging operations.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: December 28, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Mark T. Frey, Dzevat Omeragic, Jacques R. Tabanou
  • Patent number: 6727705
    Abstract: Systems and methods for monitoring a subsurface formation property and for placing a borehole in the vicinity of a well in the formation. A slotted tubular is utilized to provide through-tubular signal transmission and/or reception using an antenna adapted to generate a magnetic dipole moment with a transverse or controllable orientation. Hydraulic isolation between the interior and exterior of the tubular at the slot is provided by a pressure barrier. The tubular also forms part of a system for accurately placing a well within a desired distance and orientation relative to an existing well.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: April 27, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Mark T. Frey, Dzevat Omeragic, Jacques R. Tabanou
  • Publication number: 20030141872
    Abstract: Systems and methods for downhole communication and measurement utilizing an improved metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a run-in tool. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Hydraulic isolation between the interior and exterior of the tubular is provided by pressure barrier means at the slotted stations. Sensors and/or sources are mounted on the run-in tool, which is adapted for transmission through a drill string to engage within the tubular in alignment with the slotted stations. A run-in tool configuration includes a modulator for real-time wireless communication with the surface and/or remote downhole tools. A tubular and run-in tool configuration also includes inductive couplers for wireless signal data transfer. A method for measuring a formation characteristic utilizing a run-in tool adapted with an interchangeable end segment for multi-mode downhole transport.
    Type: Application
    Filed: January 30, 2003
    Publication date: July 31, 2003
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION.
    Inventors: Brian Clark, John Hunka, Mark T. Frey, David L. Smith, Dhananjay Ramaswamy, Anthony Collins, Stephen Bonner
  • Publication number: 20030137302
    Abstract: Systems and methods for downhole communication and measurement utilizing an improved metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a run-in tool. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Hydraulic isolation between the interior and exterior of the tubular is provided by pressure barrier means at the slotted stations. Sensors and/or sources are mounted on the run-in tool, which is adapted for transmission through a drill string to engage within the tubular in alignment with the slotted stations. A run-in tool configuration includes a modulator for real-time wireless communication with the surface and/or remote downhole tools. A tubular and run-in tool configuration also includes inductive couplers for wireless signal data transfer. A method for measuring a formation characteristic utilizing a run-in tool adapted with an interchangeable end segment for multi-mode downhole transport.
    Type: Application
    Filed: January 30, 2003
    Publication date: July 24, 2003
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Brian Clark, John Hunka, Mark T. Frey, David L. Smith, Dhananjay Ramaswamy, Anthony Collins, Stephen Bonner
  • Publication number: 20030137429
    Abstract: Systems and methods for downhole communication and measurement utilizing an improved metallic tubular having an elongated body with tubular walls and a central bore adapted to receive a run-in tool. The tubular including slotted stations to provide through-tubular signal transmission and/or reception. Hydraulic isolation between the interior and exterior of the tubular is provided by pressure barrier means at the slotted stations. Sensors and/or sources are mounted on the run-in tool, which is adapted for transmission through a drill string to engage within the tubular in alignment with the slotted stations. A run-in tool configuration includes a modulator for real-time wireless communication with the surface and/or remote downhole tools. A tubular and run-in tool configuration also includes inductive couplers for wireless signal data transfer. A method for measuring a formation characteristic utilizing a run-in tool adapted with an interchangeable end segment for multi-mode downhole transport.
    Type: Application
    Filed: January 30, 2003
    Publication date: July 24, 2003
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Brian Clark, John Hunka, Mark T. Frey, David L. Smith, Dhananjay Ramaswamy, Anthony Collins, Stephen Bonner