Patents by Inventor Mark T. Marshall

Mark T. Marshall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10350425
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) is configured to induce a tachyarrhythmia by charging a high voltage capacitor to a voltage amplitude and delivering a series of pulses to a patient's heart by discharging the capacitor via an extra-cardiovascular electrode vector. Delivering the series of pulses includes recharging the high-voltage capacitor during an inter-pulse interval between consecutive pulses of the series of pulses.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: July 16, 2019
    Assignee: Medtronic, Inc.
    Inventors: Vladimir P. Nikolski, David A. Anderson, Mark T. Marshall, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Publication number: 20190117960
    Abstract: A method and system for employing a medical device is disclosed. The medical device includes a housing, a processor disposed within the housing, a connector module, and a medical electrical epicardial lead connected to the processor through the connector module. The epicardial lead is used to sense a cardiac signal from tissue of a patient. The lead comprises an insulative lead body that includes a proximal end and a distal end, at least one conductor disposed in the lead body, and a side helical fixation member, disposed a distance from the distal end, the side helical fixation member. The side helical fixation member comprises a set of windings configured to wrap around the lead body circumference. The side helical fixation member includes a distal tip comprising a sharpened elongated flat free end that is perpendicular to the lead body and angled toward an inside of the set of windings.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Mark T. MARSHALL, Andrea J. ASLESON, Jean RUTTEN
  • Publication number: 20190091467
    Abstract: Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace/sense electrode(s) are concurrently positioned substantially over the ventricle when implanted as described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first electrode segment and a second electrode segment proximal to the first electrode segment by a distance. The leads may include at least one pace/sense electrode, which in some instances, is located between the first defibrillation electrode segment and the second defibrillation electrode segment.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 28, 2019
    Inventors: Mark T. MARSHALL, Jian CAO, Melissa G.T. CHRISTIE, Paul J. DEGROOT, Vladimir P. NIKOLSKI, Amy E. THOMPSON-NAUMAN
  • Patent number: 10195421
    Abstract: A method and system for employing a medical device is disclosed. The medical device includes a housing, a processor disposed within the housing, a connector module, and a medical electrical epicardial lead connected to the processor through the connector module. The epicardial lead is used to sense a cardiac signal from tissue of a patient. The lead comprises an insulative lead body that includes a proximal end and a distal end, at least one conductor disposed in the lead body, and a side helical fixation member, disposed a distance from the distal end, the side helical fixation member. The side helical fixation member comprises a set of windings configured to wrap around the lead body circumference. The side helical fixation member includes a distal tip comprising a sharpened elongated flat free end that is perpendicular to the lead body and angled toward an inside of the set of windings.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: February 5, 2019
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Andrea J. Asleson, Jean Rutten
  • Publication number: 20190015671
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 17, 2019
    Inventors: David A. ANDERSON, Mark T. MARSHALL, Vladimir P. NIKOLSKI, Robert T. SAWCHUK, AMY E. THOMPSON-NAUMAN, John D. WAHLSTRAND, Gregory A. YOUNKER
  • Publication number: 20190009080
    Abstract: An extra-cardiovascular medical device is configured to select a capacitor configuration from a capacitor array and deliver a low voltage, pacing pulse by discharging the selected capacitor configuration across an extra-cardiovascular pacing electrode vector. In some examples, the medical device is configured to determine the capacitor configuration based on a measured impedance of the extra-cardiovascular pacing electrode vector.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 10, 2019
    Inventors: Amy E. THOMPSON-NAUMAN, Melissa G.T. CHRISTIE, Mark T. MARSHALL, Thomas H. SPEAR
  • Patent number: 10155119
    Abstract: This disclosure is directed to techniques for delivering cardiac pacing pulses to a patient's heart by a cardiac system, such as an extra-cardiovascular ICD system. An ICD operating according to the techniques disclosed herein delivers cardiac pacing pulses using high-voltage therapy circuitry typically configured for delivering high-voltage cardioversion/defibrillation shocks. The ICD delivers the high-voltage pacing therapy via extra-cardiovascular electrodes, such as one or more extra-cardiovascular electrodes carried by a medical electrical lead extending from the ICD and/or the housing of the ICD.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: December 18, 2018
    Assignee: Medtronic, Inc.
    Inventors: David A. Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Publication number: 20180339161
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) is configured to induce a tachyarrhythmia by charging a high voltage capacitor to a voltage amplitude and delivering a series of pulses to a patient's heart by discharging the capacitor via an extra-cardiovascular electrode vector. Delivering the series of pulses includes recharging the high-voltage capacitor during an inter-pulse interval between consecutive pulses of the series of pulses.
    Type: Application
    Filed: August 1, 2018
    Publication date: November 29, 2018
    Inventors: Vladimir P. NIKOLSKI, David A. ANDERSON, Mark T. MARSHALL, Robert T. SAWCHUK, Amy E. THOMPSON-NAUMAN, John D. WAHLSTRAND, Gregory A. YOUNKER
  • Patent number: 10137295
    Abstract: Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace/sense electrode(s) are concurrently positioned substantially over the ventricle when implanted as described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first electrode segment and a second electrode segment proximal to the first electrode segment by a distance. The leads may include at least one pace/sense electrode, which in some instances, is located between the first defibrillation electrode segment and the second defibrillation electrode segment.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: November 27, 2018
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Jian Cao, Melissa G. T. Christie, Paul J. DeGroot, Vladimir P. Nikolski, Amy E. Thompson-Nauman
  • Publication number: 20180280684
    Abstract: A tool for inserting an elongate medical device into a body includes a track (e.g. defined by inner surfaces of a base wall and opposing sidewalls), and a deployment assembly for moving the device along the track. A retainer of the assembly, fitted in sliding engagement within the track and limited to move only along a portion of the track, grips a first portion of a proximal length of the device; a slider of the assembly, also fitted in sliding engagement within the track and detachably joined to the retainer, receives a second portion of the device proximal length. When detached from the retainer, the slider is free to move along a distal length of the device, and can be moved along a distal segment of the track to disengage therefrom by separating from a distal terminal end of the guide.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 4, 2018
    Inventor: Mark T. MARSHALL
  • Patent number: 10080905
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 25, 2018
    Assignee: Medtronic, Inc.
    Inventors: David A. Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Patent number: 10080891
    Abstract: An extra-cardiovascular medical device is configured to select a capacitor configuration from a capacitor array and deliver a low voltage, pacing pulse by discharging the selected capacitor configuration across an extra-cardiovascular pacing electrode vector. In some examples, the medical device is configured to determine the capacitor configuration based on a measured impedance of the extra-cardiovascular pacing electrode vector.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: September 25, 2018
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Mark T. Marshall, Thomas H. Spear
  • Patent number: 10058695
    Abstract: An implantable medical electrical lead having an elongate lead body having a proximal end and a distal portion. A plurality of defibrillation electrodes coupled to the distal portion is included, the plurality of electrodes being transitionable from a first configuration in which the defibrillation electrodes are biased in an expanded configuration to a second configuration in which the defibrillation electrodes are in a collapsed configuration. A joint slideably disposed around a portion of the lead body is included, at least a portion of the plurality of defibrillation electrodes being coupled to the joint.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 28, 2018
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Vladimir P. Nikolski, Nathan L. Olson
  • Patent number: 10046168
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) is configured to induce a tachyarrhythmia by charging a high voltage capacitor to a voltage amplitude and delivering a series of pulses to a patient's heart by discharging the capacitor via an extra-cardiovascular electrode vector. Delivering the series of pulses includes recharging the high-voltage capacitor during an inter-pulse interval between consecutive pulses of the series of pulses.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 14, 2018
    Assignee: Medtronic, Inc.
    Inventors: Vladimir P. Nikolski, David A. Anderson, Mark T. Marshall, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Patent number: 9974964
    Abstract: The disclosure describes implantable medical systems that respond to occurrence of a lead-related condition by utilizing an elongated coil electrode in defining an alternative pacing therapy vector to maintain optimal drain of an IMD power supply. An exemplary system includes a medical electrical lead having an elongated electrode and an improved sensing and therapy delivery circuitry to provide the alternative pacing therapy vector responsive to the lead-related conditions. The system reconfigures the operation of the sensing and therapy delivery circuitry triggered by the switch to the alternative pacing therapy vector.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 22, 2018
    Assignee: Medtronic, Inc.
    Inventors: Gonzalo Martinez, Mark T Marshall, Kevin R Seifert
  • Publication number: 20180117303
    Abstract: Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace/sense electrode(s) are concurrently positioned substantially over the ventricle when implanted as described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first electrode segment and a second electrode segment proximal to the first electrode segment by a distance. The leads may include at least one pace/sense electrode, which in some instances, is located between the first defibrillation electrode segment and the second defibrillation electrode segment.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 3, 2018
    Inventors: Mark T. Marshall, Jian Cao, Melissa G.T. Christie, Paul J. DeGroot, Vladimir P. Nikolski, Amy E. Thompson-Nauman
  • Patent number: 9901731
    Abstract: A conductor for connecting an electrode near a distal end of a medical electrical lead with an implantable medical device connected with a proximal end of the medical electrical lead includes a multi-filar coil wrapped around a central core. The multi-filar coil has an inductance of approximately 0.5 ?H or greater, and the central core is non-conducting and provides reinforcement for the multi-filar coil.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: February 27, 2018
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Kevin R. Seifert
  • Patent number: 9855414
    Abstract: Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace/sense electrode(s) are concurrently positioned substantially over the ventricle when implanted as described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first electrode segment and a second electrode segment proximal to the first electrode segment by a distance. The leads may include at least one pace/sense electrode, which in some instances, is located between the first defibrillation electrode segment and the second defibrillation electrode segment.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: January 2, 2018
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Jian Cao, Melissa G. T. Christie, Paul J. Degroot, Vladimir P. Nikolski, Amy E. Thompson-Nauman
  • Patent number: 9855419
    Abstract: Selective sensing implantable medical leads include pulsing and sensing portions and pulsing and not sensing portion. Leads and electrodes may be used in defibrillation and as integrated bipolar defibrillation electrodes. An entire electrode can pass charge while a valve metal or valve metal oxide portion of the electrode prevents the entire electrode from sensing, effectively rejecting unwanted signals. Differential conduction pathways, due to the valve metal and/or oxides thereof, cause the portions of the electrodes to conduct differently when used anodically and cathodically. Complex intracardiac electrical gradient can be formed along with a number of virtual electrodes within the tissue. Reentrant loops can thereby be pinned following defibrillation shock.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: January 2, 2018
    Assignee: Medtronic, Inc.
    Inventors: Timothy G. Laske, Gonzalo Martinez, Mark T. Marshall
  • Publication number: 20170368335
    Abstract: An implantable medical device (IMD) can include a cardiac pacemaker or an implantable cardioverter-defibrillator (ICD). Various portions of the IMD, such as a device body, a lead body, or a lead tip, can be provided to reduce or dissipate a current and heat induced by various external environmental factors. According to various embodiments, features can be incorporated into the lead body, the lead tip, or the IMD body to reduce the creation of an induced current, or dissipate the induced Current and heat created due to an induced current in the lead. For example, an IMD can include at least one outer conductive member and a first electrode. The first electrode can be in electrical communication with the at least one outer conductive member. The first electrode can dissipate a current induced in the at least one outer conductive member via a first portion of the anatomical structure.
    Type: Application
    Filed: August 14, 2017
    Publication date: December 28, 2017
    Inventor: Mark T. Marshall