Patents by Inventor Mark T. Rise

Mark T. Rise has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10688303
    Abstract: Target tissue sites for therapy delivery to a patient may be selected based on the patient symptoms or a patient mood state. The therapy delivery may be used to manage a psychiatric disorder of the patient. Selected therapy sites may be weighted based on factors, such as the severity of the patient symptom or mood state or the type of patient symptom or mood state. In some cases, therapy delivery to the patient may be controlled based on the weighting factors. For example, the weighting factors may control the intensity of the therapy delivery or the frequency of the therapy delivery. In some examples, the weighting factors may dynamically change based on the patient's changing symptoms or mood disorders.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: June 23, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Mark T. Rise, Jonathon E. Giftakis
  • Patent number: 10493281
    Abstract: A characteristic of a washout period following the delivery of therapy to a patient according to a therapy program may be determined based on a physiological parameter of the patient. A washout period includes the period of time during which a carryover effect from the therapy delivery dissipates. Monitoring a washout period may be useful for timing the delivery of therapy according to different therapy programs during a therapy evaluation period. For example, at least one physiological signal of the patient may be monitored to automatically determine when a washout period has ended, e.g., when stimulation and carryover effects of therapy delivery according to a first therapy program have substantially dissipated, in order to determine when therapy delivery according to a second therapy program can be initiated.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: December 3, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Mark T. Rise, Paul H. Stypulkowski, Timothy J. Denison
  • Patent number: 9613184
    Abstract: A characteristic of a washout period following the delivery of therapy to a patient according to a therapy program may be determined based on a physiological parameter of the patient. A washout period includes the period of time during which a carryover effect from the therapy dissipates. The washout period characteristic may include, for example, a duration of the washout period, an amplitude or a trend in a physiological signal during the washout period or a power level or a ratio of power levels in frequency bands of the physiological signal. In some embodiments, washout period characteristics associated with a plurality of therapy programs may be used to compare the programs. In other embodiments, a washout period characteristic may be used to determine a mood state of the patient and, in some cases, modify a therapy program. Monitoring a washout period may also be useful for timing therapy program trials.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: April 4, 2017
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Mark T. Rise, Paul H. Stypulkowski, Timothy J. Denison
  • Patent number: 9333350
    Abstract: A therapy system for managing a psychiatric disorder of the patient may be controlled based on a patient mood state. Therapy may be delivered to a patient according to a therapy program, and a physiological parameter of the patient may be monitored during or after therapy delivery. The patient mood state may be determined based on the monitored physiological parameter, and the therapy delivery may be controlled based on the determined mood state. In some embodiments, the therapy delivery is stopped prior to determining the patient mood state and the therapy delivery is restarted upon detecting a negative mood state. In other embodiments, therapy delivery is delivered until a positive mood state is detected, at which point the therapy delivery may be stopped.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: May 10, 2016
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Rise, Jonathon E. Giftakis, Paul H. Stypulkowski, Timothy J. Denison, Nathan A. Torgerson
  • Patent number: 9072832
    Abstract: Apparatus and method detect a detection cluster that is associated with a neurological event, such as a seizure, of a nervous system disorder and update therapy parameters that are associated with a treatment therapy. The occurrence of the detection cluster is detected when the maximal ratio exceeds an intensity threshold. If the maximal ratio drops below the intensity threshold for a time interval that is less than a time threshold and subsequently rises above the intensity threshold, the subsequent time duration is considered as being associated with the detection cluster rather than being associated with a different detection cluster. Consequently, treatment of the nervous system disorder during the corresponding time period is in accordance with one detection cluster. Treatment therapy may be provided by providing electrical stimulation, drug infusion or a combination.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: July 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Mark G. Frei, Ivan Osorio, Nina M. Graves, Scott F. Schaffner, Mark T. Rise, Jonathon E. Giftakis, David L. Carlson
  • Publication number: 20140309614
    Abstract: Apparatus and method detect a detection cluster that is associated with a neurological event, such as a seizure, of a nervous system disorder and update therapy parameters that are associated with a treatment therapy. The occurrence of the detection cluster is detected when the maximal ratio exceeds an intensity threshold. If the maximal ratio drops below the intensity threshold for a time interval that is less than a time threshold and subsequently rises above the intensity threshold, the subsequent time duration is considered as being associated with the detection cluster rather than being associated with a different detection cluster. Consequently, treatment of the nervous system disorder during the corresponding time period is in accordance with one detection cluster. Treatment therapy may be provided by providing electrical stimulation, drug infusion or a combination.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 16, 2014
    Applicant: Medtronic, Inc.
    Inventors: Mark G. Frei, Ivan Osorio, Nina M. Graves, Scott F. Schaffner, Mark T. Rise, Jonathon E. Giftakis, David L. Carlson
  • Patent number: 8738136
    Abstract: Apparatus and method detect a detection cluster that is associated with a neurological event, such as a seizure, of a nervous system disorder and update therapy parameters that are associated with a treatment therapy. The occurrence of the detection cluster is detected when the maximal ratio exceeds an intensity threshold. If the maximal ratio drops below the intensity threshold for a time interval that is less than a time threshold and subsequently rises above the intensity threshold, the subsequent time duration is considered as being associated with the detection cluster rather than being associated with a different detection cluster. Consequently, treatment of the nervous system disorder during the corresponding time period is in accordance with one detection cluster. Treatment therapy may be provided by providing electrical stimulation, drug infusion or a combination.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: May 27, 2014
    Assignee: Medtronic, Inc.
    Inventors: Mark G. Frei, Ivan Osorio, Nina M. Graves, Scott F. Schaffner, Mark T. Rise, Jonathon E. Giftakis, David L. Carlson
  • Patent number: 8600495
    Abstract: Apparatus and techniques to address problems associated with lead migration, patient movement or position, histological changes, neural plasticity or disease progression. Disclosed are techniques for implanting a lead having therapy delivery elements, such as electrodes or drug delivery ports, within a vertebral or cranial bone so as to maintain these elements in a fixed position relative to a desired treatment site. The therapy delivery elements may thereafter be adjusted in situ with a position control mechanism and/or a position controller to improve the desired treatment, such as electrical stimulation and/or drug infusion to a precise target. The therapy delivery elements may be positioned laterally in any direction relative to the targeted treatment site or toward or away from the targeted treatment site. A control system maybe provided for open- or closed-loop feedback control of the position of the therapy delivery elements as well as other aspects of the treatment therapy.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 3, 2013
    Assignee: Medtronic, Inc.
    Inventors: Frans Gielen, Gary W. King, Daryle Petersen, Mark T. Rise, Michael Schendel, Warren Starkebaum
  • Patent number: 8594798
    Abstract: Apparatuses and methods support multi-modal operation of a medical device system for a nervous system disorder. The medical device system comprises an implanted component and an external component and supports a first feature and a second feature that are associated with the treatment therapy. The medical device system supports both features when the implanted component and the external component are coupled. If the external component is decoupled, the implanted component continues to support the first feature. Moreover, the embodiment may support a plurality of features during a treatment interval. Another aspect of the invention allows for modularly expanding a medical device system in order to add a feature that enhances existing functionality or that provides additional functionality. In an embodiment, a module that is associated with an external component of the medical device system supports the added feature.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 26, 2013
    Assignee: Medtronic, Inc.
    Inventors: Ivan Osorio, Mark G. Frei, Mark T. Rise, Scott F. Schaffner, Nina M. Graves
  • Patent number: 8579786
    Abstract: Apparatus and method support a neurological event screening for a medical device. The medical device assists a user in determining a configuration of the medical device for delivering an effective treatment for a nervous system disorder. The medical device detects a neurological event, such as a seizure, and reports a neurological event focus location and a neurological event spread to the user. The user may use the information to provide a configuration of a therapeutic delivery unit and associated therapy parameters. Therapeutic treatment is delivered to the patient, and the medical device is provided an indication of the patient's acceptance to the treatment. The user may modify the configuration and therapy parameters in order to achieve efficacy and acceptance. Depending upon the patient's acceptance, therapy is applied in either an open loop mode or a closed loop mode. The medical device determines whether the treatment is successful in accordance with a criterion.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Ivan Osorio, Mark G. Frei, Naresh C. Bhavaraju, Thomas E. Peters, Nina M. Graves, Scott F. Schaffner, Jonathon E. Giftakis, Mark T. Rise, Jonathan C. Werder
  • Patent number: 8565886
    Abstract: In some examples, an arousal network of a brain of a patient can be activated to modify the arousal state of the patient, which may be useful in treating a cognitive disorder of the patient. In some examples, a bioelectrical brain signal indicative of electrical activity in a first portion of the brain is monitored to determine whether the patient is in a first arousal state, and, in response to determining the patient is in the first arousal state, electrical stimulation is delivered to a second portion of the brain to activate an arousal neural network in the first portion of the brain to induce a second arousal state to treat the cognitive disorder, where the second arousal state is different than the first arousal state.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 22, 2013
    Assignee: Medtronic, Inc.
    Inventors: Dwight E. Nelson, Jianping Wu, Jonathon E. Giftakis, Mark T. Rise
  • Publication number: 20120116475
    Abstract: In some examples, an arousal network of a brain of a patient can be activated to modify the arousal state of the patient, which may be useful in treating a cognitive disorder of the patient. In some examples, a bioelectrical brain signal indicative of electrical activity in a first portion of the brain is monitored to determine whether the patient is in a first arousal state, and, in response to determining the patient is in the first arousal state, electrical stimulation is delivered to a second portion of the brain to activate an arousal neural network in the first portion of the brain to induce a second arousal state to treat the cognitive disorder, where the second arousal state is different than the first arousal state.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Applicant: Medtronic, Inc.
    Inventors: Dwight E. Nelson, Jianping Wu, Jonathon E. Giftakis, Mark T. Rise
  • Publication number: 20120083866
    Abstract: An implantable lead is provided with at least one extendable member to position therapy delivery elements, which may be electrodes or drug delivery ports, after the lead has been inserted into the body. The lead may formed as a resilient element which is contained in a retainer tube that may be removed to permit the lead to deploy. Alternatively, a non-resilient lead may be provided with a slotted retainer tube. A series of mechanical linkages for expanding and retracting the lead within the human body may be actuated with various mechanisms. A control system may be provided for closed-loop feedback control of the position of the extendable members. The invention also includes a method for expanding an implantable lead in situ.
    Type: Application
    Filed: December 14, 2011
    Publication date: April 5, 2012
    Applicant: Medtronic, Inc.
    Inventors: Gary W. King, Mark T. Rise, Michael J. Schendel, Richard Schallhorn
  • Patent number: 8090449
    Abstract: An implantable lead is provided with at least one extendable member to position therapy delivery elements, which may be electrodes or drug delivery ports, after the lead has been inserted into the body. The lead may formed as a resilient element which is contained in a retainer tube that may be removed to permit the lead to deploy. Alternatively, a non-resilient lead may be provided with a slotted retainer tube. A series of mechanical linkages for expanding and retracting the lead within the human body may be actuated with various mechanisms. A control system may be provided for closed-loop feedback control of the position of the extendable members. The invention also includes a method for expanding an implantable lead in situ.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: January 3, 2012
    Assignee: Meadtronic, Inc
    Inventors: Gary W. King, Mark T. Rise, Michael J. Schendel, Richard Schallhorn
  • Patent number: 7933646
    Abstract: Apparatus and method detect a detection cluster that is associated with a neurological event, such as a seizure, of a nervous system disorder and update therapy parameters that are associated with a treatment therapy. The occurrence of the detection cluster is detected when the maximal ratio exceeds an intensity threshold. If the maximal ratio drops below the intensity threshold for a time interval that is less than a time threshold and subsequently rises above the intensity threshold, the subsequent time duration is considered as being associated with the detection cluster rather than being associated with a different detection cluster. Consequently, treatment of the nervous system disorder during the corresponding time period is in accordance with one detection cluster. Treatment therapy may be provided by providing electrical stimulation, drug infusion or a combination.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: April 26, 2011
    Assignee: Medtronic, Inc.
    Inventors: Mark G. Frei, Ivan Osorio, Nina M. Graves, Scott F. Schaffner, Mark T. Rise, Jonathon E. Giftakis, David L. Carlson
  • Publication number: 20100280336
    Abstract: An anxiety episode may be identified as being an anxiety event that is attributable to an anxiety disorder of a patient based on the patient activity associated with the anxiety episode. The patient activity may include, for example, patient motion, patient posture or voice activity. Detection of the activity component during an anxiety episode can help distinguish between a general anxiety state and an anxiety event that differs from the general anxiety state. Examples of anxiety events include, for example, an occurrence of a compulsion or a panic attack. The detected anxiety events can be used to evaluate an anxiety disorder of a patient, evaluate therapy programs implemented by a medical device to treat the anxiety disorder, or control therapy delivery. In some examples, a mood state transition is detected based on patient activity information and therapy delivery is controlled based on the detection of the mood state transition.
    Type: Application
    Filed: March 31, 2010
    Publication date: November 4, 2010
    Inventors: Jonathon E. Giftakis, Mark T. Rise, Paul H. Stypulkowski
  • Publication number: 20100241179
    Abstract: Apparatus and techniques to address problems associated with lead migration, patient movement or position, histological changes, neural plasticity or disease progression. Disclosed are techniques for implanting a lead having therapy delivery elements, such as electrodes or drug delivery ports, within a vertebral or cranial bone so as to maintain these elements in a fixed position relative to a desired treatment site. The therapy delivery elements may thereafter be adjusted in situ with a position control mechanism and/or a position controller to improve the desired treatment, such as electrical stimulation and/or drug infusion to a precise target. The therapy delivery elements may be positioned laterally in any direction relative to the targeted treatment site or toward or away from the targeted treatment site. A control system maybe provided for open- or closed-loop feedback control of the position of the therapy delivery elements as well as other aspects of the treatment therapy.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 23, 2010
    Applicant: Medtronic, Inc.
    Inventors: Frans Gielen, Gary W. King, Daryle Petersen, Mark T. Rise, Michael Schendel, Warren Starkebaum
  • Patent number: 7734342
    Abstract: Apparatus and techniques to address problems associated with lead migration, patient movement or position, histological changes, neural plasticity or disease progression. Disclosed are techniques for implanting a lead having therapy delivery elements, such as electrodes or drug delivery ports, within a vertebral or cranial bone so as to maintain these elements in a fixed position relative to a desired treatment site. The therapy delivery elements may thereafter be adjusted in situ with a position control mechanism and/or a position controller to improve the desired treatment, such as electrical stimulation and/or drug infusion to a precise target. The therapy delivery elements may be positioned laterally in any direction relative to the targeted treatment site or toward or away from the targeted treatment site. A control system maybe provided for open- or closed-loop feedback control of the position of the therapy delivery elements as well as other aspects of the treatment therapy.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: June 8, 2010
    Assignee: Medtronics, Inc.
    Inventors: Frans Gielen, Gary W. King, Daryle Petersen, Mark T. Rise, Michael Schendel, Warren Starkebaum
  • Publication number: 20100114237
    Abstract: Brain signals may be monitored at different locations of a mood circuit in order to determine a mood state of the patient. A relationship (e.g., a ratio) between frequency band characteristics of the monitored brain signals may be indicative of a particular mood state. In some examples, therapy parameter values that define the therapy delivered to the patient may be selected to maintain a target relationship (e.g., a target ratio) between the frequency band characteristics of the brain signals monitored within the mood circuit. In addition, in some examples, therapy delivery to the patient may be controlled based on the frequency band characteristics of brain signals sensed at different portions of the mood circuit.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 6, 2010
    Inventors: Jonathon E. Giftakis, Mark T. Rise, David L. Carlson, Paul H. Stypulkowski, Scott R. Stanslaski, Randy M. Jensen, Timothy J. Denison
  • Publication number: 20090264967
    Abstract: A characteristic of a washout period following the delivery of therapy to a patient according to a therapy program may be determined based on a physiological parameter of the patient. A washout period includes the period of time during which a carryover effect from the therapy delivery dissipates. Monitoring a washout period may be useful for timing the delivery of therapy according to different therapy programs during a therapy evaluation period. For example, at least one physiological signal of the patient may be monitored to automatically determine when a washout period has ended, e.g., when stimulation and carryover effects of therapy delivery according to a first therapy program have substantially dissipated, in order to determine when therapy delivery according to a second therapy program can be initiated.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 22, 2009
    Applicant: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Mark T. Rise, Paul H. Stypulkowski, Timothy J. Denison