Patents by Inventor Mark Unrath

Mark Unrath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7985942
    Abstract: Laser pulse energy adjustments are motivated by an understanding of the effect of laser pulse width variations among different lasers on satisfying a quality metric associated with a laser-processed target. In a preferred embodiment, the adjustments normalize this effect among different lasers drilling vias in a target specimen. The number of pulses delivered to the target specimen to form each via can be modified, based on the pulse energy applied to the via location, to control different via quality metrics.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: July 26, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Weisheng Lei, Glenn Simenson, Jeff Howerton, Mark Unrath
  • Patent number: 7982160
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 19, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Publication number: 20100301023
    Abstract: A laser processing system for micromachining a workpiece includes a laser source to generate laser pulses for processing a feature in a workpiece, a galvanometer-driven (galvo) subsystem to impart a first relative movement of a laser beam spot position along a processing trajectory with respect to the surface of the workpiece, and an acousto-optic deflector (AOD) subsystem to effectively widen a laser beam spot along a direction perpendicular to the processing trajectory. The AOD subsystem may include a combination of AODs and electro-optic deflectors. The AOD subsystem may vary an intensity profile of laser pulses as a function of deflection position along a dither direction to selectively shape the feature in the dither direction. The shaping may be used to intersect features on the workpiece. The AOD subsystem may also provide rastering, galvo error position correction, power modulation, and/or through-the-lens viewing of and alignment to the workpiece.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Mark A. Unrath, William J. Jordens, James Ismail, Hisashi Matsumoto, Brian J. Lineburg
  • Publication number: 20100301024
    Abstract: A laser processing system for micromachining a workpiece includes a laser source to generate laser pulses for processing a feature in a workpiece, a galvanometer-driven (galvo) subsystem to impart a first relative movement of a laser beam spot position along a processing trajectory with respect to the surface of the workpiece, and an acousto-optic deflector (AOD) subsystem. The AOD subsystem may include a combination of AODs and electro-optic deflectors. The AOD subsystem may vary an intensity profile of laser pulses as a function of deflection position along a dither direction. The AOD subsystem may be used for aligning a processing laser beam to workpiece features.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventor: Mark A. Unrath
  • Publication number: 20100140237
    Abstract: A method of accomplishing high-throughput laser processing of workpiece features arranged in a densely spaced pattern minimizes workpiece feature processing inaccuracy and quality degradation that result from dynamic and thermal loads on laser beam positioning and optical components directing the laser beam during workpiece feature processing. A preferred embodiment is implemented with a laser beam positioning system composed of a zero-inertia optical deflector of an acousto-optic beam deflector (AOD) or an electro-optical deflector (EOD) type, a galvanometer head, and a linear stage cooperating to position the laser beam among the workpiece features.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Applicant: Electro Scientific Industries, Inc.
    Inventor: Mark A. Unrath
  • Publication number: 20100059490
    Abstract: A laser processing system quickly and flexibly modifies a processing beam to determine and implement an improved or optimum beam profile for a particular application (or a subset of the application). The system reduces the sensitivity of beam shaping subsystems to variations in the laser processing system, including those due to manufacturing tolerances, thermal drift, variations in component performance, and other sources of system variation. Certain embodiments also manipulate lower quality laser beams (higher M2 values) to provide acceptable shaped beam profiles.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 11, 2010
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Mark A. Unrath, Peter Pirogovsky, Leo Baldwin
  • Publication number: 20090242531
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint R. Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Publication number: 20080299783
    Abstract: Systems and methods process structures on or within a semiconductor substrate using a series of laser pulses. In one embodiment, a deflector is configured to selectively deflect the laser pulses within a processing window. The processing window is scanned over the semiconductor substrate such that a plurality of laterally spaced rows of structures simultaneously pass through the processing window. As the processing window is scanned, the deflector selectively deflects the series of laser pulses among the laterally spaced rows within the processing window. Thus, multiple rows of structures may be processed in a single scan.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 4, 2008
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Kelly J. Bruland, Mark A. Unrath, Douglas E. Holmgren
  • Publication number: 20080179304
    Abstract: Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.
    Type: Application
    Filed: December 3, 2007
    Publication date: July 31, 2008
    Applicant: Electro Scientific Industries, Inc.
    Inventors: Yasu Osako, Mark Unrath, Mark Kosmowski
  • Publication number: 20080093349
    Abstract: A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 24, 2008
    Applicant: Electro Scientific Industries, Inc.
    Inventors: Kelly Bruland, Mark Unrath, Stephen Swaringen, Ho Lo, Clint Vandergiessen, Keith Grant
  • Patent number: 7345448
    Abstract: Preferred embodiments of the invention implement techniques for modifying the command trajectory, the architecture of a servomechanism control system, or both, to reduce the servo error during and/or after the command trajectory. An iterative refinement procedure generates for use by the servomechanism control system a corrective input, du, which significantly reduces the error between the desired and actual servomechanism control system outputs. In one embodiment, a uniquely identified plant model is employed in the iterative refinement procedure to compute an approximate gradient that improves the performance and reliability of the refinement procedure. In another embodiment, the actual plant response is used in place of the identified model in the iterative refinement procedure. This is accomplished by time-reversing the stored error signal from a training run, before applying it to the plant to generate an update to the corrective input signal du.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: March 18, 2008
    Assignee: Electro Scientific Industries, Inc.
    Inventors: David Watt, Mehmet Alpay, Mark Unrath, John Wen, Ben Potsaid
  • Patent number: 7259354
    Abstract: High speed removal of material from a specimen employs a beam positioner for directing a laser beam axis along various circular and spiral laser tool patterns. A preferred method of material removal entails causing relative movement between the axis of the beam and the specimen, directing the beam axis at an entry segment acceleration and along an entry trajectory to an entry position within the specimen at which laser beam pulse emissions are initiated, moving the beam axis at a circular perimeter acceleration within the specimen to remove material along a circular segment of the specimen, and setting the entry segment acceleration to less than twice the circular perimeter acceleration.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: August 21, 2007
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Robert M. Pailthorp, Weisheng Lei, Hisashi Matsumoto, Glenn Simenson, David A. Watt, Mark A. Unrath, William J. Jordens
  • Patent number: 7244906
    Abstract: A method and system increase the quality of results achieved by laser micromachining systems. Data relating to parameters controlling laser micromachining process are recorded during the micromachining process, identified by the feature associated with the parameters used to micromachine, and stored on the system. The stored data can be either retrieved during the micromachining process to enable real time control or retrieved after workpiece processing to conduct statistical process control.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: July 17, 2007
    Assignee: Electro Scientific Industries, Inc.
    Inventors: William J. Jordens, Lindsey M. Dotson, Mark Unrath
  • Publication number: 20070045253
    Abstract: A method and system increase the quality of results achieved by laser micromachining systems. Data relating to parameters controlling laser micromachining process are recorded during the micromachining process, identified by the feature associated with the parameters used to micromachine, and stored on the system. The stored data can be either retrieved during the micromachining process to enable real time control or retrieved after workpiece processing to conduct statistical process control.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 1, 2007
    Inventors: William Jordens, Lindsey Dotson, Mark Unrath
  • Publication number: 20060261051
    Abstract: A method and system for increasing throughput of laser micromachining systems use more than one laser. Two or more pulsed laser beams are combined and then separated into multiple laser beams that enable the system to work simultaneously at multiple locations on the workpiece with pulse rates greater than those achievable with independently operating lasers while maintaining pulse energy equal to or greater than the pulse energy of each of the original independent laser beams. Most laser micromachining applications required multiple sequential pulses to process a workpiece. Increasing the pulse rate while maintaining pulse energy effects more rapid material removal and thereby increases throughput for a laser micromachining system.
    Type: Application
    Filed: May 19, 2005
    Publication date: November 23, 2006
    Inventors: Mark Unrath, Brian Johansen, Ho Lo
  • Publication number: 20060027544
    Abstract: High speed removal of material from a specimen employs a beam positioner for directing a laser beam axis along various circular and spiral laser tool patterns. A preferred method of material removal entails causing relative movement between the axis of the beam and the specimen, directing the beam axis at an entry segment acceleration and along an entry trajectory to an entry position within the specimen at which laser beam pulse emissions are initiated, moving the beam axis at a circular perimeter acceleration within the specimen to remove material along a circular segment of the specimen, and setting the entry segment acceleration to less than twice the circular perimeter acceleration.
    Type: Application
    Filed: August 4, 2004
    Publication date: February 9, 2006
    Applicant: Electro Scientific Industries, Inc.
    Inventors: Robert Pailthorp, Weisheng Lei, Hisashi Matsumoto, Glenn Simenson, David Watt, Mark Unrath, William Jordens
  • Publication number: 20050285558
    Abstract: Preferred embodiments of the invention implement techniques for modifying the command trajectory, the architecture of a servomechanism control system, or both, to reduce the servo error during and/or after the command trajectory. An iterative refinement procedure generates for use by the servomechanism control system a corrective input, du, which significantly reduces the error between the desired and actual servomechanism control system outputs. In one embodiment, a uniquely identified plant model is employed in the iterative refinement procedure to compute an approximate gradient that improves the performance and reliability of the refinement procedure. In another embodiment, the actual plant response is used in place of the identified model in the iterative refinement procedure. This is accomplished by time-reversing the stored error signal from a training run, before applying it to the plant to generate an update to the corrective input signal du.
    Type: Application
    Filed: May 12, 2005
    Publication date: December 29, 2005
    Inventors: David Watt, Mehmet Alpay, Mark Unrath, John Wen, Ben Potsaid
  • Publication number: 20050265408
    Abstract: Laser pulse energy adjustments are motivated by an understanding of the effect of laser pulse width variations among different lasers on satisfying a quality metric associated with a laser-processed target. In a preferred embodiment, the adjustments normalize this effect among different lasers drilling vias in a target specimen. The number of pulses delivered to the target specimen to form each via can be modified, based on the pulse energy applied to the via location, to control different via quality metrics.
    Type: Application
    Filed: May 17, 2005
    Publication date: December 1, 2005
    Inventors: Weisheng Lei, Glenn Simenson, Jeff Howerton, Mark Unrath
  • Publication number: 20050224469
    Abstract: A laser beam switching system employs a laser coupled to a beam switching device that causes a laser beam to switch between first and second beam positioning heads such that while the first beam positioning head is directing the laser beam to process a workpiece target location, the second beam positioning head is moving to another target location and vice versa. A preferred beam switching device includes first and second AOMs positioned such that the laser beam passes through the AOMs without being deflected. When RF is applied to the first AOM, the laser beam is diffracted toward the first beam positioning head, and when RF is applied to the second AOM, the laser beam is diffracted toward the second beam positioning head.
    Type: Application
    Filed: November 29, 2004
    Publication date: October 13, 2005
    Inventors: Donald Cutler, Brian Baird, Richard Harris, David Hemenway, Ho Lo, Brady Nilsen, Yasu Osako, Lei Sun, Yunlong Sun, Mark Unrath
  • Patent number: 6816294
    Abstract: Laser beam positioners (300, 340) employ a steering mirror (236, 306) that performs small-angle deflection of a laser beam (270) to compensate for cross-axis (110) settling errors of a positioner stage (302). A two-axis mirror is preferred because either axis of the positioner stages may be used for performing work. In one embodiment, the steering mirror is used for error correction only without necessarily requiring coordination with the positioner stage position commands. A fast steering mirror employing a flexure mechanism and piezoelectric actuators to tip and tilt the mirror is preferred in semiconductor link processing (“SLP”) applications. This invention compensates for cross-axis settling time, resulting in increased SLP system throughput and accuracy while simplifying complexity of the positioner stages because the steering mirror corrections relax the positioner stage servo driving requirements.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: November 9, 2004
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Mark Unrath, Kelly Bruland, Ho Wai Lo, Stephen Swaringen