Patents by Inventor Mark Victor Raymond

Mark Victor Raymond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160181380
    Abstract: Embodiments provided herein describe systems and methods for forming semiconductor devices. A semiconductor substrate is provided. A source region and a drain region are formed on the semiconductor substrate. A gate electrode is formed between the source region and the drain region. A contact is formed above at least one of the source region and the drain region. The contact includes an insulating layer formed above the semiconductor substrate, an interface layer formed above the insulating layer, and a metallic layer formed above the interface layer. The interface layer is operable as a barrier between a material of the insulating layer and a material of the metallic layer, reduces the electrical resistance between the material of the insulating layer and the material of the metallic layer, or a combination thereof.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Amol Joshi, Sean Barstow, Paul Besser, Ashish Bodke, Guillaume Bouche, Nobumichi Fuchigami, Zhendong Hong, Shaoming Koh, Albert Sanghyup Lee, Salil Mujumdar, Abhijit Pethe, Mark Victor Raymond
  • Patent number: 8854067
    Abstract: Methods and structures are described for determining contact resistivities and Schottky barrier heights for conductors deposited on semiconductor wafers that can be combined with combinatorial processing, allowing thereby numerous processing conditions and materials to be tested concurrently. Methods for using multi-ring as well as single-ring CTLM structures to cancel parasitic resistance are also described, as well as structures and processes for inline monitoring of properties.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: October 7, 2014
    Assignees: Intermolecular, Inc., GLOBALFOUNDRIES, Inc.
    Inventors: Amol Joshi, Charlene Chen, John Foster, Zhendong Hong, Olov Karlsson, Bei Li, Dipankar Pramanik, Usha Raghuram, Mark Victor Raymond, Jingang Su, Bin Yang
  • Publication number: 20140055152
    Abstract: Methods and structures are described for determining contact resistivities and Schottky barrier heights for conductors deposited on semiconductor wafers that can be combined with combinatorial processing, allowing thereby numerous processing conditions and materials to be tested concurrently. Methods for using multi-ring as well as single-ring CTLM structures to cancel parasitic resistance are also described, as well as structures and processes for inline monitoring of properties.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicants: Globalfoundries, Inc., Intermolecular, Inc.
    Inventors: Amol Joshi, Charlene Chen, John Foster, Zhendong Hong, Olov Karlsson, Bei Li, Dipankar Pramanik, Usha Raghuram, Mark Victor Raymond, Jingang Su, Bin Yang
  • Patent number: 6518070
    Abstract: A process for forming a capacitor with a high-k dielectric or ferroelectric layer within a semiconductor device is used to reduce the likelihood of oxidation or materials interactions between that layer and an underlying layer. A first electrode layer includes atoms that form along grain boundaries within the first electrode layer to reduce the oxidation of a conductive plug or undesired materials interactions.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: February 11, 2003
    Assignee: Motorola, Inc.
    Inventors: Prasad V. Alluri, Mark Victor Raymond, Sucharita Madhukar, Roland R. Stumpf, Chun-Li Liu, Clarence J. Tracy
  • Patent number: 6096127
    Abstract: The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: August 1, 2000
    Assignee: Superconducting Core Technologies, Inc.
    Inventors: Duane Brian Dimos, Robert William Schwartz, Mark Victor Raymond, Husam Niman Al-Shareef, Carl Mueller, David Galt