Patents by Inventor Mark VIGNOVIC

Mark VIGNOVIC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240083749
    Abstract: A phosphorus production method can include reducing feed containing phosphate ore and providing a silica ratio from 0.3 to 0.7 in a reaction chamber from 1250 to 1380° C. Less than 20% of the phosphate remains in the residue. Another phosphorus production method includes continuously moving a reducing bed through the reaction chamber with the feed agglomerates substantially stable while in the reducing bed. Reaction chamber temperature can be from 1250 to 1380° C. A phosphorus production system includes a barrier wall segmenting the reaction chamber into a reduction zone differentiated from a preheat zone. The bed floor is configured to move continuously from the preheat zone to the reduction zone during operation. A method for producing a reduction product includes exothermically oxidizing reduction/oxidation products in the reaction chamber, thereby adding heat to the reducing bed from the freeboard as a second heat source.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: David B. Blake, Lynnae L. Blake, Mark Vignovic
  • Patent number: 11858811
    Abstract: A phosphorus production method can include reducing feed containing phosphate ore and providing a silica ratio from 0.3 to 0.7 in a reaction chamber from 1250 to 1380° C. Less than 20% of the phosphate remains in the residue. Another phosphorus production method includes continuously moving a reducing bed through the reaction chamber with the feed agglomerates substantially stable while in the reducing bed. Reaction chamber temperature can be from 1250 to 1380° C. A phosphorus production system includes a barrier wall segmenting the reaction chamber into a reduction zone differentiated from a preheat zone. The bed floor is configured to move continuously from the preheat zone to the reduction zone during operation. A method for producing a reduction product includes exothermically oxidizing reduction/oxidation products in the reaction chamber, thereby adding heat to the reducing bed from the freeboard as a second heat source.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 2, 2024
    Assignee: Novaphos Inc.
    Inventors: David B. Blake, Lynnae L. Blake, Mark Vignovic
  • Publication number: 20230076896
    Abstract: A method includes forming a reaction bed containing feed agglomerates in a reaction chamber by heating the feed agglomerates. Individual feed agglomerates initially contain particles of a gypsum source and of a silicon source approximately homogeneously distributed throughout the individual agglomerates. The gypsum and silicon in the feed agglomerates react during the heating in the reaction chamber and, thereby, form processed agglomerates that contain silicates of calcium and an increased amount of amorphous silicon compared to the feed agglomerates before the heating. The method includes generating off gas from the reaction bed, the off gas containing oxides of sulfur, and removing the processed agglomerates from the reaction chamber.
    Type: Application
    Filed: August 24, 2022
    Publication date: March 9, 2023
    Inventors: David B. Blake, Mark Vignovic
  • Publication number: 20200407224
    Abstract: A phosphorus production method can include reducing feed containing phosphate ore and providing a silica ratio from 0.3 to 0.7 in a reaction chamber from 1250 to 1380° C. Less than 20% of the phosphate remains in the residue. Another phosphorus production method includes continuously moving a reducing bed through the reaction chamber with the feed agglomerates substantially stable while in the reducing bed. Reaction chamber temperature can be from 1250 to 1380° C. A phosphorus production system includes a barrier wall segmenting the reaction chamber into a reduction zone differentiated from a preheat zone. The bed floor is configured to move continuously from the preheat zone to the reduction zone during operation. A method for producing a reduction product includes exothermically oxidizing reduction/oxidation products in the reaction chamber, thereby adding heat to the reducing bed from the freeboard as a second heat source.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventors: David B. Blake, Lynnae L. Blake, Mark Vignovic
  • Publication number: 20190292055
    Abstract: Phosphorus pentoxide production with fluorine management includes collecting phosphorus from kiln off gas as phosphoric acid containing fluorine and reacting the fluorine in the phosphoric acid with reactive silica to yield fluorosilicic acid. The fluorosilicic acid is removed from the collected phosphoric acid. Fluorine management includes discharging from the kiln a residue containing processed agglomerates and heating the discharged, processed agglomerates and releasing fluorine therefrom. The released fluorine is reacted with reactive silica to yield fluorosilicic acid and the fluorosilicic acid is collected. Fluorine management includes forming a reducing kiln bed with feed agglomerates below a reducing freeboard. Kiln off gas is generated containing phosphorus in the form of elemental phosphorus a) oxidized outside of the kiln to phosphorus pentoxide and collected as phosphoric acid, b) collected as elemental phosphorus, or c) both.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 26, 2019
    Inventors: David B. Blake, Sourabh A. Pachpor, Mark Vignovic
  • Patent number: 9783419
    Abstract: A phosphorous pentoxide producing method includes forming pre-feed agglomerates containing phosphate ore particles, carbonaceous material particles, and silica particles and heating the pre-feed agglomerates in a reducing or inert atmosphere to an induration temperature from above 900 C to less than 1180 C and maintaining the induration temperature for 15 minutes or more. The method includes forming feed agglomerates and increasing a compression strength of the feed agglomerates to above 25 lbf using the heating, the feed agglomerates exhibiting a calcium-to-silica mole ratio less than 1 and a silica-to-(calcium+magnesium) mole ratio greater than 2. A reducing kiln bed is formed using the feed agglomerates, kiln off-gas is generated, and phosphorous pentoxide is collected from the kiln off gas.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: October 10, 2017
    Assignee: JDCPhosphate, Inc.
    Inventors: David B. Blake, Joseph A. Megy, Sourabh A. Pachpor, Lawrence M. Handman, Theodore P. Fowler, James A. Trainham, Mark Vignovic
  • Publication number: 20160090305
    Abstract: A phosphorous pentoxide producing method includes forming pre-feed agglomerates containing phosphate ore particles, carbonaceous material particles, and silica particles and heating the pre-feed agglomerates in a reducing or inert atmosphere to an induration temperature from above 900 C to less than 1180 C and maintaining the induration temperature for 15 minutes or more. The method includes forming feed agglomerates and increasing a compression strength of the feed agglomerates to above 25 lbf using the heating, the feed agglomerates exhibiting a calcium-to-silica mole ratio less than 1 and a silica-to-(calcium+magnesium) mole ratio greater than 2. A reducing kiln bed is formed using the feed agglomerates, kiln off-gas is generated, and phosphorous pentoxide is collected from the kiln off gas.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 31, 2016
    Inventors: David B. BLAKE, Joseph A. MEGY, Sourabh A. PACHPOR, Lawrence M. HANDMAN, Theodore P. FOWLER, James A. TRAINHAM, Mark VIGNOVIC