Patents by Inventor Mark W. Blood

Mark W. Blood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851518
    Abstract: The present disclosure provides for a separations system for separating ethylene, 2-methylbutane and at least one unsubstituted (C6-C12) hydrocarbon in a multi-component condensate mixture. The separations system includes a feed conduit in fluid communication with a source of the multi-component condensate mixture, a stripper column in fluid communication with the feed conduit, where the stripper column separates the multi-component condensate mixture into a heavies component mixture with at least one unsubstituted (C6-C12) hydrocarbon, and a top mixture having a medium component (s) that include at least the 2-methylbutane and a light component (s) that include at least the ethylene. The separations system further includes a flash drum that separates the top mixture into the medium component (s) and the light component (s). The separations system does not include a distillation column disposed between the source of the multi-component condensate mixture and the flash drum.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: December 26, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Mark W. Blood, Brent J. Sherman
  • Patent number: 11186654
    Abstract: A method for controlling the start up conditions in a gas phase polymerization process is provided. An inventory can be calculated for each monomer, comonomer, and hydrogen sufficient to produce a polyethylene polymer having desired properties, such as, a certain melt index and/or density.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 30, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bruce J. Savatsky, Richard E. Pequeno, Michael E. Muhle, Robert O. Hagerty, Richard B. Pannell, Eric J. Markel, Mark W. Blood, Mark B. Davis
  • Publication number: 20210246234
    Abstract: The present disclosure provides for a separations system for separating ethylene, 2-methylbutane and at least one unsubstituted (C6-C12) hydrocarbon in a multi-component condensate mixture. The separations system includes a feed conduit in fluid communication with a source of the multi-component condensate mixture, a stripper column in fluid communication with the feed conduit, where the stripper column separates the multi-component condensate mixture into a heavies component mixture with at least one unsubstituted (C6-C12) hydrocarbon, and a top mixture having a medium component (s) that include at least the 2-methylbutane and a light component (s) that include at least the ethylene. The separations system further includes a flash drum that separates the top mixture into the medium component (s) and the light component (s). The separations system does not include a distillation column disposed between the source of the multi-component condensate mixture and the flash drum.
    Type: Application
    Filed: June 12, 2019
    Publication date: August 12, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Mark W. Blood, Brent J. Sherman
  • Publication number: 20210130507
    Abstract: A method for controlling the start up conditions in a gas phase polymerization process is provided. An inventory can be calculated for each monomer, comonomer, and hydrogen sufficient to produce a polyethylene polymer having desired properties, such as, a certain melt index and/or density.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 6, 2021
    Inventors: Bruce J. Savatsky, Richard E. Pequeno, Michael E. Muhle, Robert O. Hagerty, Richard B. Pannell, Eric J. Markei, Mark W. Blood, Mark B. Davis
  • Patent number: 9624323
    Abstract: The present disclosure provides a process. In an embodiment, the process includes producing a propylene-based polymer in a gas-phase polymerization reactor (10) under polymerization conditions. The polymerization conditions include a combined propylene-plus-propane partial pressure from 290 psia to 450 psia. The process further includes maintaining the combined propylene-plus-propane partial pressure in the range from 290 psia to 450 psia while simultaneously: (i) reducing propylene partial pressure in the gas-phase polymerization reactor; (ii) adding propane to the gas-phase polymerization reactor; (iii) introducing at least one C4-C10 comonomer into the gas-phase polymerization reactor (26); and forming a propylene/C4-C10 interpolymer in the gas-phase polymerization reactor (44).
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 18, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Sharon E. Peterson, Mark W. Blood, Theodore Duncan
  • Patent number: 9410001
    Abstract: Disclosed herein are improvements in recycle gas cooler systems in gas-phase polymerization processes that reduce the tendency for cooler fouling, including a recycle gas cooler system comprising a shell-and-tube heat exchanger. One or more of the tubes of the shell-and-tube heat exchanger may have a flared tube inlet at the tube sheet. The shell-and-tube heat exchanger may also be coupled to a straight inlet pipe having a length that is either at least about 5 times the inner diameter of the straight inlet pipe or at least about 15 feet, whichever is greater.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: August 9, 2016
    Assignee: Univation Technologies, LLC
    Inventors: Ping Cai, James L. Swecker, II, Mark W. Blood, Laura J. Dietsche, II, F. David Hussein
  • Publication number: 20160032031
    Abstract: The present disclosure provides a process. In an embodiment, the process includes producing a propylene-based polymer in a gas-phase polymerization reactor (10) under polymerization conditions. The polymerization conditions include a combined propylene-plus-propane partial pressure from 290 psia to 450 psia. The process further includes maintaining the combined propylene-plus-propane partial pressure in the range from 290 psia to 450 psia while simultaneously: (i) reducing propylene partial pressure in the gas-phase polymerization reactor; (ii) adding propane to the gas-phase polymerization reactor; (iii) introducing at least one C4-C10 comonomer into the gas-phase polymerization reactor (26); and forming a propylene/C4-C10 interpolymer in the gas-phase polymerization reactor (44).
    Type: Application
    Filed: March 13, 2014
    Publication date: February 4, 2016
    Applicant: W.R. Grace & Co. - Conn.
    Inventors: Sharon Peterson, Mark W. Blood, Theodore Duncan
  • Patent number: 9181361
    Abstract: Provided are systems and methods for separating a purge gas recovered from a polyethylene product. The method includes recovering a polyethylene product containing one or more volatile hydrocarbons from a polymerization reactor and contacting the polyethylene product with a purge gas to remove at least a portion of the volatile hydrocarbons to produce a polymer product having a reduced concentration of volatile hydrocarbons and a purge gas product enriched in volatile hydrocarbons. The purge gas product is compressed to a pressure of 2,500 kPaa to 10,000 kPaa, and is then cooled and separated into at least a first product, a second product, and a third product. A portion of one or more of the first, second, or third products is then recycled as a purge gas, to the polymerization reactor, or to the purge gas product enriched in volatile hydrocarbons prior to compression, respectively.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 10, 2015
    Assignee: Univation Technologies, LLC
    Inventors: Mark W. Blood, Randall L. Force, Theodore D. Duncan, George W. Schwarz, Jr., Daniel W. Mosser, Donald A. Fischer, Robert D. Olson, James Leland Swecker, II, Cloid Russell Smith, III
  • Publication number: 20150284481
    Abstract: Disclosed herein are improvements in recycle gas cooler systems in gas-phase polymerization processes that reduce the tendency for cooler fouling, including a recycle gas cooler system comprising a shell-and-tube heat exchanger. One or more of the tubes of the shell-and-tube heat exchanger may have a flared tube inlet at the tube sheet. The shell-and-tube heat exchanger may also be coupled to a straight inlet pipe having a length that is either at least about 5 times the inner diameter of the straight inlet pipe or at least about 15 feet, whichever is greater.
    Type: Application
    Filed: November 11, 2013
    Publication date: October 8, 2015
    Applicant: Univation Technologies, LLC
    Inventors: Ping Cai, James L. Swecker, II, Mark W. Blood, Laura J. Dietsche, II, F. David Hussein
  • Patent number: 9039333
    Abstract: A discharge system for removing a solid/gas mixture from a fluidized bed pressure vessel is provided. The system includes a fluidized bed pressure vessel, settling vessels, discharge lines, primary discharge valves, vent lines, primary vent valves, crosstie lines, crosstie valves, and primary exit valves wherein the system is absent a transfer tank, and absent a filter element. The method provides for transferring a solid/gas mixture via a discharge line from the pressure vessel to a settling vessel, wherein gas is separated from the mixture, and the gas is transferred to at least one other settling vessel via a crosstie line. After the solids are transferred out of the settling vessel, the empty vessel then receives gas from other settling vessels in the system.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 26, 2015
    Assignee: Univation Technologies, LLC
    Inventors: Randall L. Force, Robert G. Aronson, Mark W. Blood, Gerardo Corona, Dung P. Le, W. Scott Hamilton, Thomas A. Maliszewski, William K. Lutz
  • Patent number: 8586685
    Abstract: A process for the polymerization of olefins is disclosed. The process may include: feeding a catalyst, a liquid diluent, and an olefin to a polymerization vessel having, from a polymerization vessel bottom to a polymerization vessel top, a vapor introduction zone, a three-phase reaction zone and a vapor disengagement zone; contacting the catalyst and olefin under conditions of temperature and pressure in the presence of the liquid diluent as a continuous phase in the three-phase reaction zone to form a solid phase polyolefin; withdrawing a gas phase composition from an outlet in fluid communication with the vapor disengagement zone; circulating the gas phase composition through a gas circulation loop to an inlet in fluid communication with the vapor distribution zone at a rate sufficient to agitate the solid and liquid phases within the three-phase reaction zone; and withdrawing a reaction mixture comprising polyolefin and diluents from the three-phase reaction zone.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 19, 2013
    Assignee: Univation Technologies, LLC
    Inventors: F. David Hussein, Michael E. Muhle, Ping Cai, Mark W. Blood
  • Publication number: 20130291720
    Abstract: Provided are systems and methods for separating a purge gas recovered from a polyethylene product. The method includes recovering a polyethylene product containing one or more volatile hydrocarbons from a polymerization reactor and contacting the polyethylene product with a purge gas to remove at least a portion of the volatile hydrocarbons to produce a polymer product having a reduced concentration of volatile hydrocarbons and a purge gas product enriched in volatile hydrocarbons. The purge gas product is compressed to a pressure of 2,500 kPaa to 10,000 kPaa, and is then cooled and separated into at least a first product, a second product, and a third product. A portion of one or more of the first, second, or third products is then recycled as a purge gas, to the polymerization reactor, or to the purge gas product enriched in volatile hydrocarbons prior to compression, respectively.
    Type: Application
    Filed: December 13, 2011
    Publication date: November 7, 2013
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Mark W. Blood, Randall L. Force, Theodore D. Duncan, George W. Schwarz, JR., Daniel W. Mosser, Donald A. Fischer, Robert D. Olson, James Leland Swecker, II, Cloid Russell Smith, III
  • Patent number: 8470082
    Abstract: A system in one embodiment includes a barrier; an inverted cone in the barrier; and a member under the inverted cone and having dimensions that cause solids passing therealong between the member and the barrier to have about a constant velocity profile thereacross. A method for purging a gas from a solid/gas mixture according to one embodiment includes adding solids to a barrier having an inverted cone therein and a member under the inverted cone, wherein the solids passing along the member have about a constant vertical velocity profile thereacross; and injecting a purge gas into the solids from at least one point adjacent the member.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: June 25, 2013
    Assignee: Univation Technologies, LLC
    Inventors: William J. Blickley, Mark W. Blood, Glenn W. Baldwin
  • Patent number: 8318872
    Abstract: A method of performing a polymerization reaction in a gas phase polymerization reactor to produce a bimodal polymer while controlling activity of a bimodal polymerization catalyst composition in the reactor by controlling concentration of at least one induced condensing agent (‘ICA’) in the reactor is provided. In some embodiments, the ICA is isopentane (or another hydrocarbon compound) and the bimodal catalyst composition includes a Group 15 and metal containing catalyst compound (or other HMW catalyst for catalyzing polymerization of a high molecular weight fraction of the product), and a metallocene catalyst compound (or other LMW catalyst for catalyzing polymerization of a low molecular weight fraction of the product).
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: November 27, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, John H. Oskam, Mark W. Blood, Mark B. Davis, Douglas H. Jackson, Timothy R. Lynn, Daniel P. Zilker, Jr.
  • Publication number: 20120136127
    Abstract: A process for the polymerization of olefins is disclosed. The process may include: feeding a catalyst, a liquid diluent, and an olefin to a polymerization vessel having, from a polymerization vessel bottom to a polymerization vessel top, a vapor introduction zone, a three-phase reaction zone and a vapor disengagement zone; contacting the catalyst and olefin under conditions of temperature and pressure in the presence of the liquid diluent as a continuous phase in the three-phase reaction zone to form a solid phase polyolefin; withdrawing a gas phase composition from an outlet in fluid communication with the vapor disengagement zone; circulating the gas phase composition through a gas circulation loop to an inlet in fluid communication with the vapor distribution zone at a rate sufficient to agitate the solid and liquid phases within the three-phase reaction zone; and withdrawing a reaction mixture comprising polyolefin and diluents from the three-phase reaction zone.
    Type: Application
    Filed: July 20, 2010
    Publication date: May 31, 2012
    Applicant: Univation Technologies, LLC
    Inventors: F. David Hussein, Michael E. Muhle, Ping Cai, Mark W. Blood
  • Patent number: 8129486
    Abstract: A discharge system for removing a solid/gas mixture from a fluidized bed pressure vessel is provided. The discharge system includes a fluidized bed pressure vessel, a settling vessel, a transfer vessel, discharge line, primary discharge valve, and primary exit valve. Also in included is a method to operate the discharge system. The method includes transferring a solid/gas mixture from a fluidized bed pressure vessel to a settling vessel, transferring the solids to a transfer vessel, and then emptying the transfer vessel.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: March 6, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Randall L. Force, Robert G. Aronson, Mark W. Blood, Gerardo Corona, Dung P. Le, W. Scott Hamilton, Thomas A. Maliszewski, William K. Lutz
  • Publication number: 20110275772
    Abstract: A method of performing a polymerization reaction in a gas phase polymerization reactor to produce a bimodal polymer while controlling activity of a bimodal polymerization catalyst composition in the reactor by controlling concentration of at least one induced condensing agent (‘ICA’) in the reactor is provided. In some embodiments, the ICA is isopentane (or another hydrocarbon compound) and the bimodal catalyst composition includes a Group 15 and metal containing catalyst compound (or other HMW catalyst for catalyzing polymerization of a high molecular weight fraction of the product), and a metallocene catalyst compound (or other LMW catalyst for catalyzing polymerization of a low molecular weight fraction of the product).
    Type: Application
    Filed: December 17, 2008
    Publication date: November 10, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Bruce J. Savatsky, John H. Oskam, Mark W. Blood, Mark B. Davis, Douglas H. Jackson, Timothy R. Lynn, Daniel P. Zilker, JR.
  • Publication number: 20110219952
    Abstract: A system in one embodiment includes a barrier; an inverted cone in the barrier; and a member under the inverted cone and having dimensions that cause solids passing therealong between the member and the barrier to have about a constant velocity profile thereacross. A method for purging a gas from a solid/gas mixture according to one embodiment includes adding solids to a barrier having an inverted cone therein and a member under the inverted cone, wherein the solids passing along the member have about a constant vertical velocity profile thereacross; and injecting a purge gas into the solids from at least one point adjacent the member.
    Type: Application
    Filed: October 23, 2009
    Publication date: September 15, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: William J. Blickley, Mark W. Blood, Glenn W. Baldwin
  • Patent number: 7989562
    Abstract: A system and method for olefin polymerization is provided. The method includes polymerizing one or more olefins within a reactor having one or more injection tubes in fluid communication therewith, at least one of the one or more injection tubes having two or more concentric flow paths; flowing a catalyst through a first flow concentric path of the injection tube into the reactor; flowing one or more monomers through a second concentric flow path of the injection tube into the reactor; measuring rate of heat removal within the reactor; and adjusting the one or more monomers flow through the injection tube in response to the rate of heat removal in the reactor.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: August 2, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Kersten A Terry, Mark W. Blood, John H. Oskam, Timothy R. Lynn, Bruce J. Savatsky, Mark B. Davis
  • Publication number: 20110040048
    Abstract: A system and method for olefin polymerization is provided. The method includes polymerizing one or more olefins within a reactor having one or more injection tubes in fluid communication therewith, at least one of the one or more injection tubes having two or more concentric flow paths; flowing a catalyst through a first flow concentric path of the injection tube into the reactor; flowing one or more monomers through a second concentric flow path of the injection tube into the reactor; measuring rate of heat removal within the reactor; and adjusting the one or more monomers flow through the injection tube in response to the rate of heat removal in the reactor.
    Type: Application
    Filed: September 26, 2007
    Publication date: February 17, 2011
    Inventors: Kersten A. Terry, Mark W. Blood, John H. Oskam, Timothy R. Lynn, Bruce J. Savatsky, Mark B. Davis