Patents by Inventor Mark W. Byer

Mark W. Byer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080056642
    Abstract: Methods and apparatus for reducing a thermal load on an optical head are described. Waste light is captured at one or more locations in the optical head and directed to a location that is thermally isolated from the one or more locations in the optical head using or more optical fibers.
    Type: Application
    Filed: September 1, 2006
    Publication date: March 6, 2008
    Applicant: Mobius Photonics, Inc.
    Inventors: Mark W. Byer, Manuel J. Leonardo
  • Publication number: 20080013163
    Abstract: Control of average wavelength-converted power and/or wavelength converted pulse energy is described. One or more seed pulses may be generated and amplified with an optical amplifier to produce one or more amplified pulses. The amplified pulses may be wavelength converted to produce one or more wavelength converted pulses characterized by an average wavelength-converted power or pulse energy. Wavelength-converted power or pulse energy may be controlled by adjusting wavelength conversion efficiency without substantially changing the amplified power or pulse energy. Average wavelength-converted power may be controlled over a time scale comparable to a pulse period of the amplified pulses without adjusting an average power of the amplified pulses over the time scale comparable to a pulse period of the amplified pulses.
    Type: Application
    Filed: July 11, 2006
    Publication date: January 17, 2008
    Applicant: Mobius Photonics, Inc.
    Inventors: Manuel J. Leonardo, Mark W. Byer, Gregory L. Keaton, John Nightingale
  • Patent number: 6891608
    Abstract: Methods and apparatus for aligning a lens with respect to an axis of beam propagation are disclosed. A position of the lens is adjusted with respect to the axis along one or more directions that lie substantially parallel to a surface of a bulkhead connector. The surface of the bulkhead connector is substantially not parallel to the axis of beam propagation. A position of the lens is adjusted along a direction substantially parallel to the axis of beam propagation. After adjustment, the position of the lens is fixed with respect to the surface. An example of a lens aligning apparatus includes a lens mount configured to receive the lens, a bulkhead connector having a surface, wherein the axis of beam propagation intersects a plane of the surface, means for fixing a position of the lens mount with respect to the surface; and means for fixing a position of the lens with respect to the lens mount.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: May 10, 2005
    Assignee: Lightwave Electronics Corporation
    Inventors: Mark W. Byer, Derek J. Richard
  • Publication number: 20040021865
    Abstract: Methods and apparatus for aligning a lens with respect to an axis of beam propagation are disclosed. A position of the lens is adjusted with respect to the axis along one or more directions that lie substantially parallel to a surface of a bulkhead connector. The surface of the bulkhead connector is substantially not parallel to the axis of beam propagation. A position of the lens is adjusted along a direction substantially parallel to the axis of beam propagation. After adjustment, the position of the lens is fixed with respect to the surface. An example of a lens aligning apparatus includes a lens mount configured to receive the lens, a bulkhead connector having a surface, wherein the axis of beam propagation intersects a plane of the surface, means for fixing a position of the lens mount with respect to the surface; and means for fixing a position of the lens with respect to the lens mount.
    Type: Application
    Filed: August 5, 2002
    Publication date: February 5, 2004
    Applicant: Lightwave Electronics Corporation
    Inventors: Mark W. Byer, Derek J. Richard