Patents by Inventor Mark W. Keyser

Mark W. Keyser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10333156
    Abstract: A method for creating a formed-in-place seal on a fuel cell plate is disclosed. The method includes first dispensing a flowable seal material along a first sealing area of a fuel cell plate requiring the seal material. Next, a preformed template is located adjacent to at least a portion of the fuel cell plate, the template including predetermined apertures corresponding with a second sealing area of the plate, such that the apertures are coextensive with at least a portion of the first sealing area. Flowable seal material is applied into the apertures, and is then cured to a non-flowable state.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: June 25, 2019
    Assignee: GM Global Technology Operations LLC
    Inventor: Mark W. Keyser
  • Publication number: 20150072268
    Abstract: A method for creating a formed-in-place seal on a fuel cell plate is disclosed. The method includes first dispensing a flowable seal material along a first sealing area of a fuel cell plate requiring the seal material. Next, a preformed template is located adjacent to at least a portion of the fuel cell plate, the template including predetermined apertures corresponding with a second sealing area of the plate, such that the apertures are coextensive with at least a portion of the first sealing area. Flowable seal material is applied into the apertures, and is then cured to a non-flowable state.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventor: Mark W. Keyser
  • Patent number: 8911918
    Abstract: A method for creating a formed-in-place seal on a fuel cell plate is disclosed. The method includes first dispensing a flowable seal material along a first sealing area of a fuel cell plate requiring the seal material. Next, a preformed template is located adjacent to at least a portion of the fuel cell plate, the template including predetermined apertures corresponding with a second sealing area of the plate, such that the apertures are coextensive with at least a portion of the first sealing area. Flowable seal material is applied into the apertures, and is then cured to a non-flowable state.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: December 16, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Mark W. Keyser
  • Patent number: 8795921
    Abstract: An alignment system and method for assembling a fuel cell stack. Components of the fuel cell stack have internal alignment features and are aligned to a predetermined orientation during assembly. The system and method allow fuel cell stacks to be assembled within high tolerance levels while improving access to each component during assembly. Additionally, the system and method can provide additional rigidity to a fuel cell stack.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, Benno Andreas-Schott, Thomas P. Migliore, Ivan D. Chapman, Matthew J. Beutel, Mark W. Keyser
  • Patent number: 8722274
    Abstract: A subassembly for a fuel cell stack includes a fuel cell plate and a datum hole formed in the fuel cell plate for alignment of the fuel cell plate during assembly of the fuel cell stack. The subassembly also includes a datum insert disposed adjacent the datum hole of the fuel cell plate. The datum insert is configured to militate against a bending of the fuel cell plate at the datum hole during the assembly of the fuel cell stack.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: May 13, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel P. Miller, Mark W. Keyser, Steven J. Spencer
  • Patent number: 8603704
    Abstract: An interlockable bead seal for a bipolar plate is provided. The interlockable bead seal includes a first elongate bead formed on a first plate and a second elongate bead formed on a second plate. The first elongate bead has a sealing surface and the second elongate bead has a trough. An interlockable bipolar plate having the interlockable bead seals, and a fuel cell stack formed from a plurality of the interlockable bipolar plates, are also provided. A lateral slippage between components of the fuel cell stack is militated against by the interlockable bipolar plates.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: December 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Keyser, Gerald W. Fly
  • Patent number: 8453334
    Abstract: A method for measuring a plate for a fuel cell stack includes providing a model of the plate including a first axis and a second axis. The model has at least one theoretical measurement feature with a theoretical set of coordinates. The plate is also provided with at least one measurement feature. The first axis and the second axis are established relative to the plate. The at least one measurement feature of the plate is then located relative to the first axis and the second axis. The at least one measurement feature is measured to determine a first set of coordinates for the at least one measurement feature. The first set of coordinates of the plate is compared to the theoretical set of coordinates of the model to determine a displacement of the first set of coordinates from the theoretical set of coordinates.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: June 4, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Keyser, Steven J. Spencer
  • Publication number: 20120198714
    Abstract: A method for measuring a plate for a fuel cell stack includes providing a model of the plate including a first axis and a second axis. The model has at least one theoretical measurement feature with a theoretical set of coordinates. The plate is also provided with at least one measurement feature. The first axis and the second axis are established relative to the plate. The at least one measurement feature of the plate is then located relative to the first axis and the second axis. The at least one measurement feature is measured to determine a first set of coordinates for the at least one measurement feature. The first set of coordinates of the plate is compared to the theoretical set of coordinates of the model to determine a displacement of the first set of coordinates from the theoretical set of coordinates.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark W. Keyser, Steven J. Spencer
  • Patent number: 8227145
    Abstract: An interlockable bead seal for a bipolar plate is provided. The interlockable bead seal includes a first elongate bead formed on a first plate and a second elongate bead formed on a second plate. The first elongate bead has a sealing surface and the second elongate bead has a trough. An interlockable bipolar plate having the interlockable bead seals, and a fuel cell stack formed from a plurality of the interlockable bipolar plates, are also provided. A lateral slippage between components of the fuel cell stack is militated against by the interlockable bipolar plates.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Keyser, Gerald W. Fly
  • Publication number: 20120164560
    Abstract: An interlockable bead seal for a bipolar plate is provided. The interlockable bead seal includes a first elongate bead formed on a first plate and a second elongate bead formed on a second plate. The first elongate bead has a sealing surface and the second elongate bead has a trough. An interlockable bipolar plate having the interlockable bead seals, and a fuel cell stack formed from a plurality of the interlockable bipolar plates, are also provided. A lateral slippage between components of the fuel cell stack is militated against by the interlockable bipolar plates.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark W. Keyser, Gerald W. Fly
  • Publication number: 20120045709
    Abstract: A subassembly for a fuel cell stack includes a fuel cell plate and a datum hole formed in the fuel cell plate for alignment of the fuel cell plate during assembly of the fuel cell stack. The subassembly also includes a datum insert disposed adjacent the datum hole of the fuel cell plate. The datum insert is configured to militate against a bending of the fuel cell plate at the datum hole during the assembly of the fuel cell stack.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Daniel P. Miller, Mark W. Keyser, Steven J. Spencer
  • Patent number: 8052007
    Abstract: A container is disclosed including a plurality of seal blocks adapted to militate against the entry of a fluid into coolant channel headers formed in bipolar plates during a dip coating process, wherein the seal blocks are interconnected and include a fastening portion and a sealing portion, the sealing portion capable of being interchanged.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 8, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey M. Guzda, Mark W. Keyser, Timothy William Rowe, Steven J. Spencer
  • Patent number: 8012648
    Abstract: A compression retention system for a fuel cell system is provided. The compression retention system includes a first end unit and a second end unit configured to hold a fuel cell stack therebetween. A spring configured to apply a compressive force to the fuel cell stack is disposed between a first spring plate and a second spring plate. The first spring plate has an aperture formed therein. The compression retention system further includes a pair of sheets coupled to the first spring plate and the first end unit, and a spring strut disposed through the aperture of the first spring plate and coupled to the second spring plate and to the second end unit. A fuel cell system and method for assembling the fuel cell system with the compression retention system are also provided.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: September 6, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Todd D. Bogumil, Eric J. Connor, Anthony G. Chinnici, Paul F. Spacher, Mark W. Keyser
  • Publication number: 20110195346
    Abstract: A method for creating a formed-in-place seal on a fuel cell plate is disclosed. The method includes first dispensing a flowable seal material along a first sealing area of a fuel cell plate requiring the seal material. Next, a preformed template is located adjacent to at least a portion of the fuel cell plate, the template including predetermined apertures corresponding with a second sealing area of the plate, such that the apertures are coextensive with at least a portion of the first sealing area. Flowable seal material is applied into the apertures, and is then cured to a non-flowable state.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 11, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Mark W. Keyser
  • Publication number: 20100279195
    Abstract: An alignment system and method for assembling a fuel cell stack. Components of the fuel cell stack have internal alignment features and are aligned to a predetermined orientation during assembly. The system and method allow fuel cell stacks to be assembled within high tolerance levels while improving access to each component during assembly. Additionally, the system and method can provide additional rigidity to a fuel cell stack.
    Type: Application
    Filed: June 29, 2010
    Publication date: November 4, 2010
    Inventors: Jeffrey A. Rock, Benno Andreas-Schott, Thomas P. Migliore, Ivan D. Chapman, Matthew J. Beutel, Mark W. Keyser
  • Patent number: 7823277
    Abstract: A method for preparing a bipolar plate assembly for a fuel cell stack is provided. The method first includes the steps of providing a first unipolar plate having a first active area with a plurality of channels formed on a first inner surface thereof, and a second unipolar plate having a second active area with a plurality of lands formed on a second inner surface thereof. The first unipolar plate and the second unipolar plate are aligned to dispose the first active area adjacent the second active area. A first pressure is then applied to the first and second active areas to pre-nest the first active area and the second active area. The perimeters of the first and second unipolar plates are then joined. A clamping fixture and associated method for assembling the bipolar plate assembly is also provided.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: November 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Mark W. Keyser, Jeffrey A. Rock, Keith E. Newman, Lewis Dipietro, Scott Ofslager, Steven J. Spencer
  • Patent number: 7794890
    Abstract: An alignment system and method for assembling a fuel cell stack. Components of the fuel cell stack have internal alignment features and are aligned to a predetermined orientation during assembly. The system and method allow fuel cell stacks to be assembled within high tolerance levels while improving access to each component during assembly. Additionally, the system and method can provide additional rigidity to a fuel cell stack.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: September 14, 2010
    Inventors: Jeffrey A. Rock, Benno Andreas-Schott, Thomas P. Migliore, Ivan D. Chapman, Matthew J. Beutel, Mark W. Keyser
  • Publication number: 20090280359
    Abstract: A compression retention system for a fuel cell system is provided. The compression retention system includes a first end unit and a second end unit configured to hold a fuel cell stack therebetween. A spring configured to apply a compressive force to the fuel cell stack is disposed between a first spring plate and a second spring plate. The first spring plate has an aperture formed therein. The compression retention system further includes a pair of sheets coupled to the first spring plate and the first end unit, and a spring strut disposed through the aperture of the first spring plate and coupled to the second spring plate and to the second end unit. A fuel cell system and method for assembling the fuel cell system with the compression retention system are also provided.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 12, 2009
    Inventors: Todd D. Bogumil, Eric J. Connor, Anthony G. Chinnici, Paul F. Spacher, Mark W. Keyser
  • Publication number: 20090239128
    Abstract: An interlockable bead seal for a bipolar plate is provided. The interlockable bead seal includes a first elongate bead formed on a first plate and a second elongate bead formed on a second plate. The first elongate bead has a sealing surface and the second elongate bead has a trough. An interlockable bipolar plate having the interlockable bead seals, and a fuel cell stack formed from a plurality of the interlockable bipolar plates, are also provided. A lateral slippage between components of the fuel cell stack is militated against by the interlockable bipolar plates.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 24, 2009
    Inventors: Mark W. Keyser, Gerald W. Fly
  • Publication number: 20090188099
    Abstract: A method for preparing a bipolar plate assembly for a fuel cell stack is provided. The method first includes the steps of providing a first unipolar plate having a first active area with a plurality of channels formed on a first inner surface thereof, and a second unipolar plate having a second active area with a plurality of lands formed on a second inner surface thereof. The first unipolar plate and the second unipolar plate are aligned to dispose the first active area adjacent the second active area. A first pressure is then applied to the first and second active areas to pre-nest the first active area and the second active area. The perimeters of the first and second unipolar plates are then joined. A clamping fixture and associated method for assembling the bipolar plate assembly is also provided.
    Type: Application
    Filed: January 30, 2008
    Publication date: July 30, 2009
    Inventors: Mark W. Keyser, Jeffrey A. Rock, Keith E. Newman, Lewis Dipietro, Scott Ofslager, Steven J. Spencer