Patents by Inventor Mark W. Mueller

Mark W. Mueller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230150651
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 18, 2023
    Inventors: Mark W. Mueller, Sergei Lupashin, Raffaello D'andrea, Markus Waibel
  • Patent number: 11643205
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: May 9, 2023
    Assignee: VERITY AG
    Inventors: Federico Augugliaro, Raffaello D'Andrea, Markus Hehn, Mark W. Mueller, Philipp Reist, Markus Waibel
  • Patent number: 11591071
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: February 28, 2023
    Assignee: ETH Zurich
    Inventors: Mark W. Mueller, Sergei Lupashin, Raffaello D'Andrea, Markus Waibel
  • Publication number: 20220119110
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Inventors: Federico Augugliaro, Raffaello D'Andrea, Markus Hehn, Mark W. Mueller, Philipp Reist, Markus Waibel
  • Patent number: 11214368
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 4, 2022
    Assignee: VERITY AG
    Inventors: Federico Augugliaro, Raffaello D'Andrea, Markus Hehn, Mark W. Mueller, Philipp Reist, Markus Waibel
  • Publication number: 20210188422
    Abstract: According to a first aspect of the invention, there is provided a method for iterating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached lo the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Application
    Filed: March 9, 2021
    Publication date: June 24, 2021
    Inventors: Mark W. MUELLER, Sergei Lupashin, Raffaello D'Andrea, Markus Waibel
  • Publication number: 20210107648
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Federico Augugliaro, Raffaello D'Andrea, Markus Hehn, Mark W. Mueller, Philipp Reist, Markus Waibel
  • Patent number: 10946950
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: March 16, 2021
    Assignee: ETH Zurich
    Inventors: Mark W. Mueller, Sergei Lupashin, Raffaello D'Andrea, Markus Waibel
  • Patent number: 10899445
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 26, 2021
    Assignee: Verity AG
    Inventors: Federico Augugliaro, Raffaello D'Andrea, Markus Hehn, Mark W. Mueller, Philipp Reist, Markus Waibel
  • Publication number: 20200262543
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 20, 2020
    Inventors: Mark W. MUELLER, Sergei LUPASHIN, Raffaello D'ANDREA, Markus WAIBEL
  • Publication number: 20200165007
    Abstract: A flying machine storage container is provided that comprises multiple charging stations and a clamping mechanism. The clamping mechanism is configured to secure flying machines in the charging stations and securely close charging circuits between the storage container and the flying machines. A system for launching flying machines is also provided. The system comprises two regions and a transition region between the two regions. The two regions each constrain the positioning of a flying machine and the transition region enables a flying machine to move from the first region to the second region to reach an exit. A flying machine having sufficient performance capabilities will be able to successfully launch. Centralized and decentralized communication architectures are also provided for communicating data between a central control system, multiple storage containers, and multiple stored flying machines stored at each of the storage containers.
    Type: Application
    Filed: February 28, 2017
    Publication date: May 28, 2020
    Inventors: Federico Augugliaro, Raffaello D'Andrea, Markus Hehn, Mark W. Mueller, Philipp Reist, Markus Waibel
  • Patent number: 10562611
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: February 18, 2020
    Assignee: ETH Zurich
    Inventors: Mark W. Mueller, Sergei Lupashin, Raffaello D'Andrea, Markus Waibel
  • Patent number: 10529204
    Abstract: Remote notification of alarms improves security. When an alarm is detected by a security system, a notification message is sent to notify a user or emergency responder. If video data is requested, only certain locations are permitted access to outputs from cameras.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: January 7, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: John Alson Hicks, III, Nicholas S. Huslak, James Aromando, Michael D. Cercena, Francis John Connell, Mark W. Mueller, Deva-Datta Sharma, J. Kirk Shrewsbury
  • Patent number: 10464661
    Abstract: According to a first aspect of the invention, there is provided a volitant vehicle comprising, a body (112), a control unit being configured to compute an estimate of the orientation of a primary axis (130) of said body with respect to a predefined reference frame, wherein said primary axis is an axis about which said vehicle rotates when flying; and at least one propeller (104) attacked to the body, wherein each of said at least one propeller has an axis of rotation (110) which is fixed with respect to said body, is configured to simultaneously produce a thrust force and a torque, said thrust force having a component along the primary axis, said torque having a component along the primary axis constructively contributing to the vehicle rotating about said primary axis, said torque having a component perpendicular to the primary axis, and all of said at least one propeller rotate with the same handedness about their respective thrust forces.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: November 5, 2019
    Assignee: ETH Zurich
    Inventors: Raffaello D'Andrea, Sergei Lupashin, Mark W. Mueller, Markus Waibel
  • Publication number: 20190283865
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Application
    Filed: April 22, 2019
    Publication date: September 19, 2019
    Inventors: Mark W. MUELLER, Sergei LUPASHIN, Raffaello D'ANDREA, Markus WAIBEL
  • Patent number: 10308349
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: June 4, 2019
    Assignee: ETH Zurich
    Inventors: Mark W. Mueller, Sergei Lupashin, Raffaello D'Andrea, Markus Waibel
  • Publication number: 20180155009
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 7, 2018
    Inventors: Mark W. MUELLER, Sergei LUPASHIN, Raffaello D'ANDREA, Markus WAIBEL
  • Patent number: 9856016
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: January 2, 2018
    Assignee: ETH Zurich
    Inventors: Mark W. Mueller, Sergei Lupashin, Raffaello D'Andrea, Markus Waibel
  • Publication number: 20160152321
    Abstract: According to a first aspect of the invention, there is provided a volitant vehicle comprising, a body (112), a control unit being configured to compute an estimate of the orientation of a primary axis (130) of said body with respect to a predefined reference frame, wherein said primary axis is an axis about which said vehicle rotates when flying; and at least one propeller (104) attacked to the body, wherein each of said at least one propeller has an axis of rotation (110) which is fixed with respect to said body, is configured to simultaneously produce a thrust force and a torque, said thrust force having a component along the primary axis, said torque having a component along the primary axis constructively contributing to the vehicle rotating about said primary axis, said torque having a component perpendicular to the primary axis, and all of said at least one propeller rotate with the same handedness about their respective thrust forces.
    Type: Application
    Filed: June 5, 2014
    Publication date: June 2, 2016
    Inventors: Raffaello D'ANDREA, Sergei LUPASHIN, Mark W. MUELLER, Markus WAIBEL
  • Publication number: 20160107751
    Abstract: According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure.
    Type: Application
    Filed: June 5, 2014
    Publication date: April 21, 2016
    Inventors: Raffaello D'ANDREA, Sergei LUPASHIN, Mark W. MUELLER, Markus WAIBEL