Patents by Inventor Mark W. Muggli

Mark W. Muggli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113301
    Abstract: Methods of preparing a dry powder blend co-coagulating conductive carbon black particles and fibrillizable polytetrafluoroethylene particles from an aqueous dispersion and drying the co-coagulate are described. Dry powders prepared by such methods and electrodes prepared from such powders are also described.
    Type: Application
    Filed: September 7, 2023
    Publication date: April 4, 2024
    Inventors: Michael H. Mitchell, Michael C. Dadalas, Mark W. Muggli, Helmut Traunspurger, André Streiter, Kevin W. Eberman, Brandon A. Bartling
  • Publication number: 20230279192
    Abstract: The process is described for recycling a heat-treated solid article including a fluorinated polymer having a fluorinated polymer backbone chain and a plurality of groups represented by formula —SO3Z, wherein Z is independently a hydrogen, an alkali-metal cation, or a quaternary ammonium cation. The heat-treated solid article was previously heated at a temperature of at least 100° C. The process includes heating the heat-treated solid article in the presence of water and base to form a fluorinated polymer salt solution, allowing the fluorinated polymer salt solution to cool, and converting the fluorinated polymer salt solution to fluorinated polymer solution wherein Z is hydrogen by cation exchange.
    Type: Application
    Filed: June 8, 2021
    Publication date: September 7, 2023
    Inventors: Gregg D. Dahlke, Denis Duchesne, Klaus Hintzer, Mark W. Muggli, Thomas W. Schoettle, Arne Thaler
  • Publication number: 20230090482
    Abstract: A composite includes a fluorinated polymer and nanoparticles of a metal salt. The metal salt has a solubility product of not more than 1×10?4. The fluorinated polymer includes a fluorinated polymer backbone chain and a plurality of groups represented by formula —SO2X, in which each X is independently —NZH, —NZSO2(CF2)1-6SO2X?, —NZ[SO2(CF2)dSO2NZ]1-10SO2(CF2)dSO2X? or —OZ, and Z is independently a hydrogen, an alkali-metal cation, or a quaternary ammonium cation, X? is independently —NZH or —OZ, and each d is independently 1 to 6. A polymer electrolyte membrane, an electrode, and a membrane electrode assembly including the composite are also provided.
    Type: Application
    Filed: April 9, 2021
    Publication date: March 23, 2023
    Inventors: Arne Thaler, Andreas Rosin, Mark W. Muggli, Klaus Hintzer, Patrick K. Heimerdinger, Thorsten Gerdes, Denis Duchesne, Gregg D. Dahlke
  • Publication number: 20230002297
    Abstract: The process produces a fluorinated olefin from a fluorinated copolymer having at least one of sulfonic acid groups, carboxylic acid groups, or salts thereof. The process includes heating the fluorinated copolymer at a first temperature not more than 450° C. to decompose at least one of the sulfonic acid groups, carboxylic acid groups, or salts thereof to form a partially pyrolyzed intermediate and subsequently heating the partially pyrolyzed intermediate at a second temperature of at least 550° C. to produce the fluorinated olefin.
    Type: Application
    Filed: December 17, 2020
    Publication date: January 5, 2023
    Inventors: Arne Thaler, Achim Schmidt-Rodenkirchen, Mark W. Muggli, Konstantin Mierdel, Klaus Hintzer, Thorsten Gerdes, Denis Duchesne, Gregg D. Dahlke
  • Publication number: 20220219357
    Abstract: The present disclosure relates to a film usable for roll-to-roll processing of flexible electronic devices, the film comprising a composite material comprising a polymer and hexagonal boron nitride particles, wherein the hexagonal boron nitride particles comprise platelet-shaped hexagonal boron nitride particles. The present disclosure further relates to a process for producing said film, and to the use of said film.
    Type: Application
    Filed: April 30, 2020
    Publication date: July 14, 2022
    Inventors: Bernd Ruisinger, Armin Kayser, Mark W. Muggli, Michael C. Dadalas, Robert Veenendaal, Johanna Zimmermann-Ptacek
  • Patent number: 11292934
    Abstract: A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: April 5, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Kevin M. Hamer, Jeffrey A. Peterson, Thomas J. Blong, Timothy D. Fletcher, Michael Juergens, Mark W. Muggli, Gezahegn D. Damte
  • Publication number: 20200095450
    Abstract: A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Naiyong Jing, Kevin M. Hamer, Jeffrey A. Peterson, Thomas J. Blong, Timothy D. Fletcher, Michael Juergens, Mark W. Muggli, Gezahegn D. Damte
  • Patent number: 10526503
    Abstract: A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: January 7, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Kevin M. Hamer, Jeffrey A. Peterson, Thomas J. Blong, Timothy D. Fletcher, Michael Juergens, Mark W. Muggli, Gezahegn D. Damte
  • Patent number: 10227484
    Abstract: Described herein is a composition comprising (i) a hydrofluorothermoplastic polymer, wherein the hydrofluorothermoplastic polymer is derived from: (a) 50-85 mol % tetrafluoroethene; (b) 2-15 mol % hexafluoropropene; (c) 10-35 mol % vinylidene fluoride; and (d) 0.1 to 5 mol % of a bromine-containing monomer; and (ii) a perhalogenated thermoplastic polymer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: March 12, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies
  • Publication number: 20180374644
    Abstract: A capacitor comprises an electrically conductive cylinder, an electrically conductive or semi-conductive cylindrical shell or shell segment arranged concentrically around the electrically conductive cylinder, and a dielectric arranged between the electrically conductive cylinder and the electrically conductive or semi-conductive cylindrical shell or shell segment. The dielectric comprises a particulate composite including a matrix material having a non-zero (e.g. negative) thermal coefficient of relative permittivity and a particulate filler material blended with the matrix material, the particulate filler material having an opposite (e.g. positive thermal) coefficient of relative permittivity. The positive thermal coefficient of relative permittivity is thereby selected such that the capacitance value of the capacitor is constant within a stability margin over a predefined temperature interval.
    Type: Application
    Filed: December 9, 2016
    Publication date: December 27, 2018
    Inventors: Gunther A.J. Stollwerck, Mark Gravermann, Mark W. Muggli
  • Patent number: 10087322
    Abstract: Described herein is a composition comprising a fluorothermoplastic polymer, wherein the fluorothermoplastic polymer is derived from: (a) 60-85 mol % tetrafluoroethene; (b) 2-12 mol % hexafluoropropene; (c) 10-30 mol % vinylidene fluoride; (d) 0.2 to 5 mol % of a bromine-containing monomer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: October 2, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies
  • Publication number: 20170226337
    Abstract: Described herein is a composition comprising a fluorothermoplastic polymer, wherein the fluorothermoplastic polymer is derived from: (a) 60-85 mol % tetrafluoroethene; (b) 2-12 mol % hexafluoropropene; (c) 10-30 mol % vinylidene fluoride; (d) 0.2 to 5 mol % of a bromine-containing monomer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Application
    Filed: August 11, 2015
    Publication date: August 10, 2017
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies
  • Publication number: 20170226336
    Abstract: Described herein is a composition comprising (i) a hydrofluorothermoplastic polymer, wherein the hydrofluorothermoplastic polymer is derived from: (a) 50-85 mol % tetrafluoroethene; (b) 2-15 mol % hexafluoropropene; (c) 10-35 mol % vinylidene fluoride; and (d) 0.1 to 5 mol % of a bromine-containing monomer; and (ii) a perhalogenated thermoplastic polymer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Application
    Filed: August 13, 2015
    Publication date: August 10, 2017
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies
  • Patent number: 9562168
    Abstract: Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: February 7, 2017
    Inventors: Naiyong Jing, Mark W. Muggli, Larry S. Hebert, Kevin M. Hamer, Thomas J. Blong, Michael Juergens, George Van Dyke Tiers, Zhigang Yu, Yaming Wang, Yiwen Chu
  • Publication number: 20160237298
    Abstract: A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
    Type: Application
    Filed: October 29, 2014
    Publication date: August 18, 2016
    Inventors: Naiyong Jing, Kevin M. Hamer, Jeffrey A. Peterson, Thomas J. Blong, Timothy D. Fletcher, Michael Juergens, Mark W. Muggli, Gezahegn D. Damte
  • Publication number: 20160046822
    Abstract: Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: Naiyong Jing, Mark W. Muggli, Larry S. Hebert, Kevin M. Hamer, Thomas J. Blong, Michael Juergens, George Van Dyke Tiers, Zhigang Yu, Yaming Wang, Yiwen Chu
  • Patent number: 9221990
    Abstract: Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: December 29, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Mark W. Muggli, Larry S. Hebert, Kevin M. Hamer, Thomas J. Blong, Michael Juergens, George Van Dyke Tiers, Zhigang Yu, Yaming Wang, Yiwen Chu
  • Publication number: 20150240105
    Abstract: Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
    Type: Application
    Filed: November 14, 2012
    Publication date: August 27, 2015
    Inventors: Naiyong Jing, Mark W. Muggli, Larry S. Hebert, Kevin M. Hamer, Thomas J. Blong, Michael Juergens, George Van Dyke Tiers, Zhigang Yu, Yaming Wang, Yiwen Chu
  • Patent number: 8821680
    Abstract: The multilayer film serves as a laminate. In some embodiments, the film is a multilayered structure that, in its base form, encompasses an intermediate layer with first and second outer layer affixed to opposing sides of the intermediate layer. In some embodiments, the first outer layer is a semi-crystalline fluoropolymer. In some embodiments, the intermediate layer includes a polyester and the second outer layer is an olefinic polymer.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 2, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Dennis E. Hull, Joseph G. Walton, Maria P. Dillon, David B. Redmond, Mark W. Muggli, Thomas J. Blong
  • Patent number: 8691388
    Abstract: The multilayer film serves as a laminate. The film is a multilayered structure that, in its base form, encompasses an intermediate layer with first and second outer layer affixed to opposing sides of the intermediate layer. The first outer layer is a semi-crystalline fluoropolymer. The intermediate layer includes a polyester and the second outer layer is an olefinic polymer. The layers are bonded together in the noted order to provide the multilayer film.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 8, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Dennis Hull, Joseph G. Walton, Maria P. Dillon, David B. Redmond, Mark W. Muggli, Thomas J. Blong