Patents by Inventor Mark W. Smith

Mark W. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240253006
    Abstract: Embodiments relate to methods for enhancing chemical conversions. One or more embodiments relate to a method for enhancing a multi-step chemical conversion reaction. The method includes providing a reactant mixture having one or more reacting specie(s); and providing a catalyst or sorbent having one or more support materials and one or more deposited catalytically active materials. The method further includes applying an electromagnetic field with a prescribed power, frequency, and pulsing strategy specific to interactions of reactant species and an electromagnetic field with at least one of the support materials, sorbent, and catalytically active materials in a particular chemical reaction.
    Type: Application
    Filed: March 6, 2024
    Publication date: August 1, 2024
    Inventors: Dushyant SHEKHAWAT, David A BERRY, Mark W Smith, Christina WILDFIRE, Victor ABDELSAYED
  • Patent number: 11975303
    Abstract: Embodiments relate to methods for enhancing chemical conversions. One or more embodiments relate to a method for enhancing a multi-step chemical conversion reaction. The method includes providing a reactant mixture comprising one or more reacting specie(s); and providing a catalyst or sorbent comprising one or more support materials and one or more deposited catalytically active materials. The method further includes applying an electromagnetic field with a prescribed power, frequency, and pulsing strategy specific to interactions of reactant species and an electromagnetic field with at least one of the support materials, sorbent, and catalytically active materials in a particular chemical reaction.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: May 7, 2024
    Assignee: United States Department of Energy
    Inventors: Dushyant Shekhawat, David A Berry, Mark W Smith, Christina Wildfire, Victor Abdelsayed
  • Patent number: 11781975
    Abstract: A remote sensor system comprising a laser transmitter that emits a pulse of broadband laser illumination comprising a plurality of wavelengths and a receiver configured to detect laser illumination backscatter. The sensor system further includes a computing system configured to determine a plurality of species number densities along a travel path of the laser illumination. Determining the plurality of species number densities includes determining a first number density of a first species based on a first set of optical transmission values from the backscatter data for a first subset of wavelengths of the plurality of wavelengths and a first attenuation cross-section of the first species. Additional species are determined based on additional sets of optical transmission values from the backscatter data for additional subsets of wavelengths of the plurality of wavelengths and additional cross-sections of additional species.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: October 10, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventor: Mark W. Smith
  • Patent number: 11207662
    Abstract: One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: December 28, 2021
    Assignee: U.S. Department of Energy
    Inventors: David A. Berry, Dushyant Shekhawat, Daniel J. Haynes, Mark W. Smith
  • Publication number: 20200376476
    Abstract: A method of enhancing a chemical reaction. The method includes providing catalyst particles with a predefined geometric shape having at least one of edges and points; and applying microwave energy to the catalyst particles, enhancing catalytic activity of the catalyst particles without increasing bulk temperature of surrounding reactants.
    Type: Application
    Filed: June 1, 2020
    Publication date: December 3, 2020
    Applicant: United States Department of Energy
    Inventors: Dushyant Shekhawat, Mark W. Smith, David A. Berry, Christina Wildfire, Victor Abdelsayed, Michael Spencer
  • Publication number: 20200276558
    Abstract: One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 3, 2020
    Applicant: United States Department of Energy
    Inventors: DAVID A. BERRY, DUSHYANT SHEKHAWAT, DANIEL J. HAYNES, MARK W. SMITH
  • Patent number: 10688472
    Abstract: One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 23, 2020
    Assignee: U.S. Department of Energy
    Inventors: David A. Berry, Dushyant Shekhawat, Daniel J. Haynes, Mark W. Smith
  • Publication number: 20190282992
    Abstract: Embodiments relate to methods for enhancing chemical conversions. One or more embodiments relate to a method for enhancing a multi-step chemical conversion reaction. The method includes providing a reactant mixture comprising one or more reacting specie(s); and providing a catalyst or sorbent comprising one or more support materials and one or more deposited catalytically active materials. The method further includes applying an electromagnetic field with a prescribed power, frequency, and pulsing strategy specific to interactions of reactant species and an electromagnetic field with at least one of the support materials, sorbent, and catalytically active materials in a particular chemical reaction.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventors: Dushyant Shekhawat, David A Berry, Mark W Smith, Christina Wildfire, Victor Abdelsayed, Michael Spencer
  • Patent number: 10288482
    Abstract: Technologies for detecting absorption of electromagnetic radiation traveling through a measurement volume of interest are described herein. In a general embodiment, a laser is used to emit electromagnetic radiation through the measurement volume where absorption is desirably detected. An optical collector receives a portion of the radiation and directs a first fraction of the portion back to a gain medium of the laser, where the radiation is amplified and emitted again, and directs a second fraction to an optical sensor that can detect absorption in the measurement volume based upon attenuation of energy of the radiation. As the radiation feeds back to the gain medium and is emitted again, energy at attenuated wavelengths is amplified less than at other wavelengths. Thus, attenuation of energy of the radiation due to absorption in the measurement volume is cumulative, and relatively small absorptions are amplified, allowing smaller absorptions to be detected more easily.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: May 14, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventor: Mark W. Smith
  • Patent number: 9598644
    Abstract: A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO2, or mixtures thereof and the hydrogen agent may be H2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: March 21, 2017
    Assignee: U.S. Department of Energy
    Inventors: Dushyant Shekhawat, David A. Berry, Daniel J. Haynes, Victor Abdelsayed, Mark W. Smith, James J. Spivey
  • Publication number: 20160265973
    Abstract: Technologies for detecting absorption of electromagnetic radiation traveling through a measurement volume of interest are described herein. In a general embodiment, a laser is used to emit electromagnetic radiation through the measurement volume where absorption is desirably detected. An optical collector receives a portion of the radiation and directs a first fraction of the portion back to a gain medium of the laser, where the radiation is amplified and emitted again, and directs a second fraction to an optical sensor that can detect absorption in the measurement volume based upon attenuation of energy of the radiation. As the radiation feeds back to the gain medium and is emitted again, energy at attenuated wavelengths is amplified less than at other wavelengths. Thus, attenuation of energy of the radiation due to absorption in the measurement volume is cumulative, and relatively small absorptions are amplified, allowing smaller absorptions to be detected more easily.
    Type: Application
    Filed: February 3, 2016
    Publication date: September 15, 2016
    Inventor: Mark W. Smith
  • Publication number: 20160001935
    Abstract: A manway cover assembly can be used to control access to the interior of a railroad tank car or other type of tank or structure. A manway cover assembly can also be used for selectively sealing an access passageway of a tank. The manway cover assembly can have an internal seal that remains sealed independent of movement between the cover and the opening within a set range of movement. The manway cover assembly can have a tightening system and a cover to control access to the opening.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 7, 2016
    Inventors: Mark W. Smith, Alexander R. Smith, Ronald Scott Craig
  • Patent number: 9150476
    Abstract: A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO2, or mixtures thereof and the hydrogen agent may be H2.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: October 6, 2015
    Assignee: U.S. Department of Energy
    Inventors: Dushyant Shekhawat, David A. Berry, Daniel J. Haynes, Victor Abdelsayed, Mark W. Smith, James J. Spivey
  • Patent number: 9126833
    Abstract: A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 ?m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300° C., the second zone operates at 300-700° C., and the third operates at 700-1000° C., and fourth zone operates at at least 700° C.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: September 8, 2015
    Assignee: U.S. Department of Energy
    Inventors: David A. Berry, Daniel J. Haynes, Dushyant Shekhawat, Mark W. Smith
  • Publication number: 20140363365
    Abstract: A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 ?m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300° C., the second zone operates at 300-700° C., and the third operates at 700-1000° C., and fourth zone operates at at least 700° C.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 11, 2014
    Inventors: David A. Berry, Daniel J. Haynes, Dushyant Shekhawat, Mark W. Smith
  • Patent number: 8545153
    Abstract: A fastener and a fastener system using the fastener are disclosed. The fastener has an elongated shank having a thread formed at one end and a annular recess formed adjacent the threaded portion to define a leading and trailing abutment surface. The thread guides the fastener into engagement with one or more components having thread engagement features and the annular recess permits the free spinning of the fastener without further tightening after the thread engagement features have advanced past the thread. The fastening system includes the fastener and a component to be fastened having a passageway for accepting the fastener formed by at least two flanges engageable in the thread and engageable in the annular recess of the fastener.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 1, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Mark W. Smith, Leon E. Garay
  • Patent number: 7864544
    Abstract: A printed circuit board assembly includes a first printed circuit board having a plurality of electrical traces that is attached to a second printed circuit board having a plurality of electrical traces in a substantially perpendicular fashion. The first printed circuit board has a plurality of male terminal tabs that fit into a plurality of female terminal slots of the second printed circuit board to make a plurality of electrical connections between the electrical traces of the first printed circuit board and the electrical traces of the second printed circuit board. The assembly has at least two mechanical connections between the first printed circuit board and the second printed circuit board comprising connector blades that are substantially perpendicular to the first printed circuit board and to the second printed circuit board. The connector blades may also make electrical connections between electrical traces of the first and second printed circuit boards.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: January 4, 2011
    Assignee: Delphi Technologies, Inc.
    Inventors: Mark W. Smith, Christopher A. Brandon
  • Publication number: 20090191021
    Abstract: A fastener and a fastener system using the fastener are disclosed. The fastener has an elongated shank having a thread formed at one end and a annular recess formed adjacent the threaded portion to define a leading and trailing abutment surface. The thread guides the fastener into engagement with one or more components having thread engagement features and the annular recess permits the free spinning of the fastener without further tightening after the thread engagement features have advanced past the thread. The fastening system includes the fastener and a component to be fastened having a passageway for accepting the fastener formed by at least two flanges engageable in the thread and engageable in the annular recess of the fastener.
    Type: Application
    Filed: January 30, 2008
    Publication date: July 30, 2009
    Inventors: Mark W. Smith, Leon E. Garay
  • Publication number: 20090034222
    Abstract: A printed circuit board assembly includes a first printed circuit board having a plurality of electrical traces that is attached to a second printed circuit board having a plurality of electrical traces in a substantially perpendicular fashion. The first printed circuit board has a plurality of male terminal tabs that fit into a plurality of female terminal slots of the second printed circuit board to make a plurality of electrical connections between the electrical traces of the first printed circuit board and the electrical traces of the second printed circuit board. The assembly has at least two mechanical connections between the first printed circuit board and the second printed circuit board comprising connector blades that are substantially perpendicular to the first printed circuit board and to the second printed circuit board. The connector blades may also make electrical connections between electrical traces of the first and second printed circuit boards.
    Type: Application
    Filed: August 1, 2007
    Publication date: February 5, 2009
    Inventors: Mark W. Smith, Christopher A. Brandon
  • Patent number: 7267583
    Abstract: An electrical connection system comprises a female connector having a plurality of female terminals, and a male connector having a plurality of male blade terminals having projecting portions that plug into the plurality of female terminals respectively when the female connector and the male connector are mated. The male blade terminals are staggered having a first population with their tips at a first relative position and a second population with their at a second different relative position so that the first tips and the second tips do not touch and fully engage the mating female terminals and the plurality of male blade terminals at the same time thereby lowering the peak engagement force required for mating the female connector and the male connector. In an alternative arrangement, the female terminals, rather than the male blade terminals are staggered.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: September 11, 2007
    Assignee: Delphi Technologies, Inc.
    Inventor: Mark W. Smith