Patents by Inventor Mark Wade

Mark Wade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200021384
    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 16, 2020
    Inventors: Vladimir Stojanovic, Alexandra Wright, Chen Sun, Mark Wade, Roy Edward Meade
  • Publication number: 20190384020
    Abstract: A beam steering structure includes an alignment structure shaped to receive and align an optical fiber such that an axis of a core of the optical fiber is oriented in a first direction. The beam steering structure includes an end portion having an angled optical surface oriented at a non-zero angle relative to the first direction. The end portion is shaped and positioned so that light propagating along the first direction from the optical fiber passes through the end portion to reach the angled optical surface. A reflecting system is positioned on the angled optical surface across the first direction. The reflecting system is configured to reflect incident light propagating along the first direction into a first reflected beam of a first polarization and a second reflected beam of a second polarization. The first and second reflected beams are directed into first and second optical communication channels, respectively.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 19, 2019
    Inventors: John Fini, Roy Edward Meade, Derek Van Orden, Mark Wade
  • Publication number: 20190317288
    Abstract: An optical module includes a laser light supply system and a chip disposed within a housing. The chip includes a laser input optical port and a transmit data optical port and a receive data optical port. The optical module includes a link-fiber interface exposed at an exterior surface of the housing. The link-fiber interface includes a transmit data connector and a receive data connector. The optical module includes a polarization-maintaining optical fiber connected between a laser output optical port of the laser light supply system and the laser input optical port of the chip. The optical module includes a first non-polarization-maintaining optical fiber connected between the transmit data optical port of the chip and the transmit data connector of the link-fiber interface. The optical module includes a second non-polarization-maintaining optical fiber connected between the receive data optical port of the chip and the receive data connector of the link-fiber interface.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 17, 2019
    Inventors: John Fini, Roy Edward Meade, Mark Wade, Chen Sun, Vladimir Stojanovic, Alexandra Wright
  • Patent number: 10398713
    Abstract: In one embodiment, the present application discloses methods of treating diseases and disorders with sulfasalazine and pharmaceutical formulations of sulfasalazine where the bioavailability of the sulfasalazine is increased. In another embodiment, the present application also provides dosing regimens for treating neurodegenerative diseases and disorders with compositions comprising sulfasalazine.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: September 3, 2019
    Assignee: Glialogix, Inc.
    Inventors: Thaddeus Cromwell Reeder, Mark Wade Moore, Douglas Alan Lorenz, David Keith Lyon
  • Patent number: 10330875
    Abstract: An optical module includes a laser light supply system and a chip disposed within a housing. The chip includes a laser input optical port and a transmit data optical port and a receive data optical port. The optical module includes a link-fiber interface exposed at an exterior surface of the housing. The link-fiber interface includes a transmit data connector and a receive data connector. The optical module includes a polarization-maintaining optical fiber connected between a laser output optical port of the laser light supply system and the laser input optical port of the chip. The optical module includes a first non-polarization-maintaining optical fiber connected between the transmit data optical port of the chip and the transmit data connector of the link-fiber interface. The optical module includes a second non-polarization-maintaining optical fiber connected between the receive data optical port of the chip and the receive data connector of the link-fiber interface.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 25, 2019
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Mark Wade, Chen Sun, Vladimir Stojanovic, Alexandra Wright
  • Publication number: 20190089461
    Abstract: An interposer device includes a substrate that includes a laser source chip interface region, a silicon photonics chip interface region, an optical amplifier module interface region. A fiber-to-interposer connection region is formed within the substrate. A first group of optical conveyance structures is formed within the substrate to optically connect a laser source chip to a silicon photonics chip when the laser source chip and the silicon photonics chip are interfaced to the substrate. A second group of optical conveyance structures is formed within the substrate to optically connect the silicon photonics chip to an optical amplifier module when the silicon photonics chip and the optical amplifier module are interfaced to the substrate. A third group of optical conveyance structures is formed within the substrate to optically connect the optical amplifier module to the fiber-to-interposer connection region when the optical amplifier module is interfaced to the substrate.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Derek Van Orden, Michael Davenport
  • Publication number: 20190015431
    Abstract: In one embodiment, the present application discloses methods of treating diseases and disorders with sulfasalazine and pharmaceutical formulations of sulfasalazine where the bioavailability of the sulfasalazine is increased. In another embodiment, the present application also provides dosing regimens for treating neurodegenerative diseases and disorders with compositions comprising sulfasalazine.
    Type: Application
    Filed: April 17, 2018
    Publication date: January 17, 2019
    Applicant: Glialogix, Inc.
    Inventors: Thaddeus Cromwell Reeder, Mark Wade Moore, Douglas Alan Lorenz, David Keith Lyon
  • Publication number: 20180335558
    Abstract: A first reflecting region is positioned at an end of an optical fiber and includes a polarization-sensitive reflector configured to selectively reflect a first polarization of light emanating from the optical fiber into a first reflected beam and transmit light that is not of the first polarization. The first reflected beam is directed toward a first optical grating coupler on a chip. A spacer layer is disposed on the first reflecting region such that light transmitted from the first reflecting region enters and passes through the spacer layer. A second reflecting region is disposed on the spacer layer and is configured to reflect light that is incident upon the second reflecting region into a second reflected beam directed toward a second optical grating coupler on the chip. A thickness of the spacer layer is set to control a separation distance between the first reflected beam and the second reflected beam.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 22, 2018
    Inventors: John Fini, Roy Edward Meade, Derek Van Orden, Mark Wade
  • Publication number: 20180239095
    Abstract: A photonic chip includes a substrate, an electrical isolation region formed over the substrate, and a front end of line (FEOL) region formed over the electrical isolation region. The photonic chip also includes an optical coupling region. The electrical isolation region and the FEOL region and a portion of the substrate are removed within the optical coupling region. A top surface of a the substrate within the optical coupling region includes a plurality of grooves configured to receive and align a plurality of optical fibers. The grooves are formed at a vertical depth within the substrate to provide for alignment of optical cores of the plurality of optical fibers with the FEOL region when the plurality of optical fibers are positioned within the plurality of grooves within the optical coupling region.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 23, 2018
    Inventors: Mark Wade, Chen Sun, John Fini, Roy Edward Meade, Vladimir Stojanovic, Alexandra Wright
  • Publication number: 20180217344
    Abstract: An optical module includes a laser light supply system and a chip disposed within a housing. The chip includes a laser input optical port and a transmit data optical port and a receive data optical port. The optical module includes a link-fiber interface exposed at an exterior surface of the housing. The link-fiber interface includes a transmit data connector and a receive data connector. The optical module includes a polarization-maintaining optical fiber connected between a laser output optical port of the laser light supply system and the laser input optical port of the chip. The optical module includes a first non-polarization-maintaining optical fiber connected between the transmit data optical port of the chip and the transmit data connector of the link-fiber interface. The optical module includes a second non-polarization-maintaining optical fiber connected between the receive data optical port of the chip and the receive data connector of the link-fiber interface.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Inventors: John Fini, Roy Edward Meade, Mark Wade, Chen Sun, Vladimir Stojanovic, Alexandra Wright
  • Publication number: 20180172910
    Abstract: A lens assembly for an optical fiber includes an optical gap structure and a multi-mode optical fiber. The optical gap structure has first and second ends and a length measured therebetween. The first end of the optical gap structure is configured to attach to an end of a single-mode optical fiber. The multi-mode optical fiber has first and second ends and a length measured therebetween. The first end of the multi-mode optical fiber is attached to the second end of the optical gap structure. The length of the optical gap structure and the length of the multi-mode optical fiber are set to provide a prescribed working distance and a prescribed light beam waist diameter. The prescribed working distance is a distance measured from the second end of the multi-mode optical fiber to a location of the prescribed light beam waist diameter.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 21, 2018
    Inventors: Roy Edward Meade, John Fini, Mark Wade
  • Patent number: 9980978
    Abstract: In one embodiment, the present application discloses methods of treating diseases and disorders with sulfasalazine and pharmaceutical formulations of sulfasalazine where the bioavailability of the sulfasalazine is increased. In another embodiment, the present application also provides dosing regimens for treating neurodegenerative diseases and disorders with compositions comprising sulfasalazine.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 29, 2018
    Assignee: GLIALOGIX, INC.
    Inventors: Thaddeus Cromwell Reeder, Mark Wade Moore, Douglas Alan Lorenz, David Keith Lyon
  • Patent number: 9974798
    Abstract: In one embodiment, the present application discloses methods of treating diseases and disorders with sulfasalazine and pharmaceutical formulations of sulfasalazine where the bioavailability of the sulfasalazine is increased. In another embodiment, the present application also provides dosing regimens for treating neurodegenerative diseases and disorders with compositions comprising sulfasalazine.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 22, 2018
    Assignee: GLIALOGIX, INC.
    Inventors: Thaddeus Cromwell Reeder, Mark Wade Moore, Douglas Alan Lorenz, David Keith Lyon
  • Publication number: 20180094382
    Abstract: A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: David Wesley Chiasson, Craig Miller Conrad, Jonathan Edward Moon, Mark Wade Petersen, David Henry Smith
  • Publication number: 20180089291
    Abstract: A system displays summaries of relationships of a selected data asset with other data assets at a limited number of levels upstream and downstream from the selected data asset in rows above and below the selected data asset. In each row, data assets are arranged in order of usage, with most used data asset displayed directly above or below the selected data asset. The user views grandparent-level data assets of a parent-level data asset that is directly above the selected data asset. The system includes a carousal feature to further navigate the lineage data upstream or downstream. By selecting a new data asset in the parent row, the user can view grandparent-level data assets of the newly selected data asset. The user can view multiple upstream or downstream levels arranged in respective rows displayed above or below the selected data asset. The system can analyze data from any application.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 29, 2018
    Inventors: Sandhya VANKAMAMIDI, Jung-Chen Hung, Mark Wade Heninger
  • Publication number: 20180089277
    Abstract: A system displays summaries of relationships of a selected data asset with other data assets at a limited number of levels upstream and downstream from the selected data asset in rows above and below the selected data asset. In each row, data assets are arranged in order of usage, with most used data asset displayed directly above or below the selected data asset. The user views grandparent-level data assets of a parent-level data asset that is directly above the selected data asset. The system includes a carousal feature to further navigate the lineage data upstream or downstream. By selecting a new data asset in the parent row, the user can view grandparent-level data assets of the newly selected data asset. The user can view multiple upstream or downstream levels arranged in respective rows displayed above or below the selected data asset. The system can analyze data from any application.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 29, 2018
    Inventors: Sandhya VANKAMAMIDI, Jung-Chen HUNG, Mark Wade HENINGER
  • Patent number: 9918997
    Abstract: In one embodiment, the present application discloses methods of treating diseases and disorders with sulfasalazine and pharmaceutical formulations of sulfasalazine where the bioavailability of the sulfasalazine is increased. In another embodiment, the present application also provides dosing regimens for treating neurodegenerative diseases and disorders with compositions comprising sulfasalazine.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: March 20, 2018
    Assignee: GLIALOGIX, INC.
    Inventors: Thaddeus Cromwell Reeder, Mark Wade Moore, Douglas Alan Lorenz, David Keith Lyon
  • Publication number: 20180063930
    Abstract: A universal dimming apparatus with an integrated timer to adjust brightness levels according to a preset schedule consists of a power source, a microcontroller, a dimmer user interface, an integrated timer, an internal storage device, and a phase-cut dimmer unit. The power source provides the necessary electric power. The dimmer user interface allows the user to enter a preferred schedule for a lighting system with a preferred brightness level. The user entered data is stored in the internal storage device. The integrated timer and the phase-cut dimmer unit draws the stored information via the microcontroller. An indicator light is used to notify the user regarding the reduced brightness levels.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 1, 2018
    Inventors: Cameron Trice, Mark Wade Simpkins
  • Publication number: 20180062761
    Abstract: An optical cavity is formed to have a circuitous configuration. The optical cavity is configured to receive light coupled from a waveguide. At least two photodetector sections are formed over respective portions of the optical cavity. Each of the at least two photodetector sections is configured to detect light present within the optical cavity. Each of the at least two photodetector sections is configured for separate and independent control.
    Type: Application
    Filed: August 25, 2017
    Publication date: March 1, 2018
    Inventors: Mark Wade, Chen Sun, Nandish Mehta
  • Publication number: 20180019139
    Abstract: A photoresist material is deposited, patterned, and developed on a backside of a wafer to expose specific regions on the backside of chips for etching. These specific regions are etched to form etched regions through the backside of the chips to a specified depth within the chips. The specified depth may correspond to an etch stop material. Etching of the backside of the wafer can also be done along the chip kerf regions to reduce stress during singulation/dicing of individual chips from the wafer. Etching of the backside of the chips can be done with the chips still part of the intact wafer. Or, the wafer having the pattered and developed photoresist on its backside can be singulated/diced before etching through the backside of the individual chips. The etched region(s) formed through the backside of a chip can be used for attachment of optical component(s) to the chip.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 18, 2018
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic